All-microwave spectroscopy and polarization of individual nuclear spins in a solid
- URL: http://arxiv.org/abs/2408.14282v2
- Date: Mon, 16 Sep 2024 10:53:19 GMT
- Title: All-microwave spectroscopy and polarization of individual nuclear spins in a solid
- Authors: J. Travesedo, J. O'Sullivan, L. Pallegoix, Z. W. Huang, P. Hogan, P. Goldner, T. Chaneliere, S. Bertaina, D. Esteve, P. Abgrall, D. Vion, E. Flurin, P. Bertet,
- Abstract summary: We report magnetic resonance spectroscopy measurements of individual nuclear spins in a crystal coupled to a neighbouring paramagnetic center.
We observe real-time quantum jumps of the nuclear spin state, a proof of their individual nature.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We report magnetic resonance spectroscopy measurements of individual nuclear spins in a crystal coupled to a neighbouring paramagnetic center, detected using microwave fluorescence at millikelvin temperatures. We observe real-time quantum jumps of the nuclear spin state, a proof of their individual nature. By driving the forbidden transitions of the coupled electron-nuclear spin system, we also achieve single-spin solid-effect dynamical nuclear polarization. Relying exclusively on microwave driving and microwave photon counting, the methods reported here are in principle applicable to a large number of electron-nuclear spin systems, in a wide variety of samples.
Related papers
- Quantum Memory Enhanced Multipoint Correlation Spectroscopy for Statistically Polarized NMR [0.0]
We introduce multipoint correlation spectroscopy to enable temporally efficient measurements of statistically polarized samples at the nanoscale with spin ensembles.
We achieve single hertz uncertainty in the estimated signal frequency, highlighting the potential applications of the technique for nanoscale nuclear magnetic resonance.
arXiv Detail & Related papers (2025-03-24T17:51:43Z) - Nuclear Magnetic Resonance with a Levitating Micro-Particle [0.0]
We observe Nuclear Magnetic Resonance (NMR) within a levitating micro-diamond using the nuclear spins of nitrogen-14 atoms.
Our results offer promise for various applications, including cooling macroscopic particles to their motional ground state.
arXiv Detail & Related papers (2024-07-29T07:35:13Z) - Spin-orbit torque on nuclear spins exerted by a spin accumulation via
hyperfine interactions [49.1574468325115]
This article demonstrates that the hyperfine coupling, which consists of Fermi contact and dipolar interactions, can mediate the application of spin-orbit torques acting on nuclear spins.
The reactions to the equilibrium and nonequilibrium components of the spin density is a torque on the nucleus with field-like and damping-like components.
This nuclear spin-orbit torque is a step toward stabilizing and controlling nuclear magnetic momenta, in magnitude and direction, and realizing nuclear spintronics.
arXiv Detail & Related papers (2023-05-21T08:05:23Z) - Single electron-spin-resonance detection by microwave photon counting [1.3281177137699656]
Single-electron-spin sensitivity has been reached using spin-dependent photoluminescence, transport measurements, and scanning-probe techniques.
Here, we demonstrate single electron magnetic resonance by spin fluorescence detection, using a microwave photon counter at cryogenic temperatures.
arXiv Detail & Related papers (2023-01-06T18:57:58Z) - Measuring the magnon-photon coupling in shaped ferromagnets: tuning of
the resonance frequency [50.591267188664666]
cavity photons and ferromagnetic spins excitations can exchange information coherently in hybrid architectures.
Speed enhancement is usually achieved by optimizing the geometry of the electromagnetic cavity.
We show that the geometry of the ferromagnet plays also an important role, by setting the fundamental frequency of the magnonic resonator.
arXiv Detail & Related papers (2022-07-08T11:28:31Z) - Quantum control of nuclear spin qubits in a rapidly rotating diamond [62.997667081978825]
Nuclear spins in certain solids couple weakly to their environment, making them attractive candidates for quantum information processing and inertial sensing.
We demonstrate optical nuclear spin polarization and rapid quantum control of nuclear spins in a diamond physically rotating at $1,$kHz, faster than the nuclear spin coherence time.
Our work liberates a previously inaccessible degree of freedom of the NV nuclear spin, unlocking new approaches to quantum control and rotation sensing.
arXiv Detail & Related papers (2021-07-27T03:39:36Z) - Demonstration of electron-nuclear decoupling at a spin clock transition [54.088309058031705]
Clock transitions protect molecular spin qubits from magnetic noise.
linear coupling to nuclear degrees of freedom causes a modulation and decay of electronic coherence.
An absence of quantum information leakage to the nuclear bath provides opportunities to characterize other decoherence sources.
arXiv Detail & Related papers (2021-06-09T16:23:47Z) - Anisotropic electron-nuclear interactions in a rotating quantum spin
bath [55.41644538483948]
Spin-bath interactions are strongly anisotropic, and rapid physical rotation has long been used in solid-state nuclear magnetic resonance.
We show that the interaction between electron spins of nitrogen-vacancy centers and a bath of $13$C nuclear spins introduces decoherence into the system.
Our findings offer new insights into the use of physical rotation for quantum control with implications for quantum systems having motional and rotational degrees of freedom that are not fixed.
arXiv Detail & Related papers (2021-05-16T06:15:00Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Detecting spins with a microwave photon counter [0.0]
We demonstrate the detection of a small ensemble of donor spins in silicon by their fluorescence at microwave frequency and millikelvin temperatures.
We discuss the potential of fluorescence detection as a novel method for magnetic resonance spectroscopy of small numbers of spins.
arXiv Detail & Related papers (2021-02-02T10:12:48Z) - Nuclear spin readout in a cavity-coupled hybrid quantum dot-donor system [0.0]
Nuclear spins show long coherence times and are well isolated from the environment.
We present a method for nuclear spin readout by probing the transmission of a microwave resonator.
arXiv Detail & Related papers (2020-12-02T16:51:50Z) - Coherent Microwave Control of a Nuclear Spin Ensemble at Room
Temperature [0.0]
We demonstrate coherent manipulation of a nuclear spin ensemble using microwave fields at room temperature.
We show that employing an off-axis magnetic field with a modest amplitude is enough to tilt the direction of the electronic spins.
We could then demonstrate fast Rabi oscillations on electron-nuclear spin exchanging transitions, coherent population trapping and polarization of nuclear spin ensembles.
arXiv Detail & Related papers (2020-05-26T23:29:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.