論文の概要: Streamline tractography of the fetal brain in utero with machine learning
- arxiv url: http://arxiv.org/abs/2408.14326v1
- Date: Mon, 26 Aug 2024 14:54:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 13:41:26.211821
- Title: Streamline tractography of the fetal brain in utero with machine learning
- Title(参考訳): 機械学習を用いた子宮における胎児脳のストリーライントラクトグラフィー
- Authors: Weide Liu, Camilo Calixto, Simon K. Warfield, Davood Karimi,
- Abstract要約: 本研究は胎児のトラクトグラフィーにおける最初の機械学習モデルである。
妊娠23週から36週の無作為な11検体で,手作業による全脳胎児体幹画像の訓練を行い,訓練モデルの妥当性を検証した。
- 参考スコア(独自算出の注目度): 7.164734676863147
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Diffusion-weighted magnetic resonance imaging (dMRI) is the only non-invasive tool for studying white matter tracts and structural connectivity of the brain. These assessments rely heavily on tractography techniques, which reconstruct virtual streamlines representing white matter fibers. Much effort has been devoted to improving tractography methodology for adult brains, while tractography of the fetal brain has been largely neglected. Fetal tractography faces unique difficulties due to low dMRI signal quality, immature and rapidly developing brain structures, and paucity of reference data. This work presents the first machine learning model for fetal tractography. The model input consists of five sources of information: (1) Fiber orientation, inferred from a diffusion tensor fit to the dMRI signal; (2) Directions of recent propagation steps; (3) Global spatial information, encoded as distances to keypoints in the brain cortex; (4) Tissue segmentation information; and (5) Prior information about the expected local fiber orientations supplied with an atlas. In order to mitigate the local tensor estimation error, a large spatial context around the current point in the diffusion tensor image is encoded using convolutional and attention neural network modules. Moreover, the diffusion tensor information at a hypothetical next point is included in the model input. Filtering rules based on anatomically constrained tractography are applied to prune implausible streamlines. We trained the model on manually-refined whole-brain fetal tractograms and validated the trained model on an independent set of 11 test scans with gestational ages between 23 and 36 weeks. Results show that our proposed method achieves superior performance across all evaluated tracts. The new method can significantly advance the capabilities of dMRI for studying normal and abnormal brain development in utero.
- Abstract(参考訳): 拡散強調MRI(Diffusion-weighted magnetic resonance imaging、dMRI)は、白質の消化管と脳の構造的接続を研究するための唯一の非侵襲的ツールである。
これらの評価は、白色物質繊維を表す仮想の流れを再構築するトラクトグラフィー技術に大きく依存している。
成人脳のトラクトグラフィー手法の改善に多くの努力が注がれてきたが、胎児脳のトラクトグラフィーは無視されている。
胎児のトラクトグラフィーは、低dMRI信号品質、未熟で急速に発達する脳構造、および参照データの微妙さにより、特有の困難に直面している。
本研究は胎児のトラクトグラフィーにおける最初の機械学習モデルである。
モデル入力は,(1)dMRI信号に適合する拡散テンソルから推定される繊維配向,(2)最近の伝播の方向,(3)大脳皮質のキーポイントまでの距離として符号化されるグローバル空間情報,(4)組織セグメンテーション情報,(5)アトラスで供給される期待される局所繊維配向に関する事前情報からなる。
局所テンソル推定誤差を軽減するために、拡散テンソル画像の電流点周辺の大きな空間コンテキストを畳み込みニューラルネットワークモジュールを用いて符号化する。
また、モデル入力には、仮説次点における拡散テンソル情報が含まれている。
解剖学的に制約されたトラクトグラフィーに基づくフィルタリング規則を不明瞭な流線形に適用する。
妊娠23週から36週の無作為な11検体で,手作業による全脳胎児体幹画像の訓練を行い,訓練モデルの妥当性を検証した。
その結果,提案手法はすべての評価トラクタに対して優れた性能を示すことがわかった。
本手法は, 子宮の正常脳と異常脳の発達を研究するために, dMRIの能力を著しく向上させることができる。
関連論文リスト
- Topology-Aware Graph Augmentation for Predicting Clinical Trajectories in Neurocognitive Disorders [27.280927277680515]
本稿では、一般化可能なエンコーダをトレーニングするためのプレテキストモデルと、下流タスクを実行するためのタスク固有モデルからなるトポロジ対応グラフ拡張(TGA)フレームワークを提案する。
1,688 fMRIでの実験では、TGAがいくつかの最先端の手法より優れていることが示唆された。
論文 参考訳(メタデータ) (2024-10-31T19:37:20Z) - Anatomically Constrained Tractography of the Fetal Brain [6.112565873653592]
我々は,dMRI空間内での胎児脳組織の正確な分画に基づく解剖学的拘束性トラクトグラフィーを提唱する。
独立試験データを用いて実験したところ、この方法は胎児の脳組織を正確に分画し、トラクトグラフィーの結果を大幅に改善できることがわかった。
論文 参考訳(メタデータ) (2024-03-04T19:56:19Z) - Fetal-BET: Brain Extraction Tool for Fetal MRI [4.214523989654048]
約72,000個の胎児脳MRI画像の注釈付きデータセットを構築した。
このデータセットを用いて、U-Netスタイルアーキテクチャのパワーを利用してディープラーニング手法を開発し、検証した。
本手法では,マルチコントラスト(マルチシーケンス)胎児MRIデータからの豊富な情報を活用し,胎児の脳構造を正確に把握する。
論文 参考訳(メタデータ) (2023-10-02T18:14:23Z) - TractCloud: Registration-free tractography parcellation with a novel
local-global streamline point cloud representation [63.842881844791094]
現在のトラクトグラフィーのパーセレーション法は登録に大きく依存しているが、登録の不正確さはパーセレーションに影響を及ぼす可能性がある。
我々は,個別の主題空間で直接,脳全体のトラクトログラフィ解析を行う,登録不要のフレームワークであるTractCloudを提案する。
論文 参考訳(メタデータ) (2023-07-18T06:35:12Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
本稿では,正常脳解剖のパッチベース推定法として拡散モデルの生成タスクを再構築する手法を提案する。
腫瘍と多発性硬化症について検討し,既存のベースラインと比較して25.1%の改善がみられた。
論文 参考訳(メタデータ) (2023-03-07T09:40:22Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
多チャンネル脳波データからいくつかの皮質下領域の活性を回復するための解釈可能な領域基底解を提案する。
我々は,皮質下核の血行動態信号の頭皮脳波予測の空間的・時間的パターンを復元する。
論文 参考訳(メタデータ) (2022-10-23T15:11:37Z) - DeepSTI: Towards Tensor Reconstruction using Fewer Orientations in
Susceptibility Tensor Imaging [9.79660375437555]
感応性テンソルイメージング(英語: Susceptibility tensor imaging、STI)は、2階テンソルモデルを用いて異方性組織磁気感受性を特徴付ける新しい磁気共鳴イメージング技術である。
STIは、白質繊維経路の再構築と、ミリ分解能以下で脳のミエリン変化を検出するための情報を提供する可能性がある。
しかし、生体内でのSTIの応用は、その難易度とMR相の変化を測定するための時間を要する取得要求によって妨げられている。
論文 参考訳(メタデータ) (2022-09-09T20:03:53Z) - Superficial White Matter Analysis: An Efficient Point-cloud-based Deep
Learning Framework with Supervised Contrastive Learning for Consistent
Tractography Parcellation across Populations and dMRI Acquisitions [68.41088365582831]
ホワイトマターパーセレーション(White matter parcellation)は、トラクトグラフィーをクラスタまたは解剖学的に意味のあるトラクトに分類する。
ほとんどのパーセレーション法はディープホワイトマター(DWM)にフォーカスするが、その複雑さのため表面ホワイトマター(SWM)に対処する手法は少ない。
本稿では,2段階の深層学習に基づく新しいフレームワークであるSuperficial White Matter Analysis (SupWMA)を提案する。
論文 参考訳(メタデータ) (2022-07-18T23:07:53Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
本稿では,畳み込みニューラルネットワークや生成的敵ネットワークに基づく手法を含む,高速MRIのためのディープラーニングに基づくデータ駆動手法を紹介する。
MRI加速のための物理とデータ駆動モデルの結合に関する研究について詳述する。
最後に, 臨床応用について紹介し, マルチセンター・マルチスキャナー研究における高速MRI技術におけるデータ調和の重要性と説明可能なモデルについて述べる。
論文 参考訳(メタデータ) (2022-04-01T22:48:08Z) - Interpretation of 3D CNNs for Brain MRI Data Classification [56.895060189929055]
T1脳MRIにおける拡散テンソル画像の男女差について,これまでの知見を拡張した。
ボクセルの3次元CNN解釈を3つの解釈法の結果と比較する。
論文 参考訳(メタデータ) (2020-06-20T17:56:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。