Streamline tractography of the fetal brain in utero with machine learning
- URL: http://arxiv.org/abs/2408.14326v1
- Date: Mon, 26 Aug 2024 14:54:14 GMT
- Title: Streamline tractography of the fetal brain in utero with machine learning
- Authors: Weide Liu, Camilo Calixto, Simon K. Warfield, Davood Karimi,
- Abstract summary: This work presents the first machine learning model for fetal tractography.
We trained the model on manually-refined whole-brain fetal tractograms and validated the trained model on an independent set of 11 test scans with gestational ages between 23 and 36 weeks.
- Score: 7.164734676863147
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Diffusion-weighted magnetic resonance imaging (dMRI) is the only non-invasive tool for studying white matter tracts and structural connectivity of the brain. These assessments rely heavily on tractography techniques, which reconstruct virtual streamlines representing white matter fibers. Much effort has been devoted to improving tractography methodology for adult brains, while tractography of the fetal brain has been largely neglected. Fetal tractography faces unique difficulties due to low dMRI signal quality, immature and rapidly developing brain structures, and paucity of reference data. This work presents the first machine learning model for fetal tractography. The model input consists of five sources of information: (1) Fiber orientation, inferred from a diffusion tensor fit to the dMRI signal; (2) Directions of recent propagation steps; (3) Global spatial information, encoded as distances to keypoints in the brain cortex; (4) Tissue segmentation information; and (5) Prior information about the expected local fiber orientations supplied with an atlas. In order to mitigate the local tensor estimation error, a large spatial context around the current point in the diffusion tensor image is encoded using convolutional and attention neural network modules. Moreover, the diffusion tensor information at a hypothetical next point is included in the model input. Filtering rules based on anatomically constrained tractography are applied to prune implausible streamlines. We trained the model on manually-refined whole-brain fetal tractograms and validated the trained model on an independent set of 11 test scans with gestational ages between 23 and 36 weeks. Results show that our proposed method achieves superior performance across all evaluated tracts. The new method can significantly advance the capabilities of dMRI for studying normal and abnormal brain development in utero.
Related papers
- Topology-Aware Graph Augmentation for Predicting Clinical Trajectories in Neurocognitive Disorders [27.280927277680515]
We propose a topology-aware graph augmentation (TGA) framework, comprising a pretext model to train a generalizable encoder and a task-specific model to perform downstream tasks.
Experiments on 1, 688 fMRI scans suggest that TGA outperforms several state-of-the-art methods.
arXiv Detail & Related papers (2024-10-31T19:37:20Z) - Anatomically Constrained Tractography of the Fetal Brain [6.112565873653592]
We advocate for anatomically constrained tractography based on an accurate segmentation of the fetal brain tissue directly in the dMRI space.
Experiments on independent test data show that this method can accurately segment the fetal brain tissue and drastically improve tractography results.
arXiv Detail & Related papers (2024-03-04T19:56:19Z) - Fetal-BET: Brain Extraction Tool for Fetal MRI [4.214523989654048]
We build a large annotated dataset of approximately 72,000 2D fetal brain MRI images.
Using this dataset, we developed and validated deep learning methods, by exploiting the power of the U-Net style architectures.
Our approach leverages the rich information from multi-contrast (multi-sequence) fetal MRI data, enabling precise delineation of the fetal brain structures.
arXiv Detail & Related papers (2023-10-02T18:14:23Z) - TractCloud: Registration-free tractography parcellation with a novel
local-global streamline point cloud representation [63.842881844791094]
Current tractography parcellation methods rely heavily on registration, but registration inaccuracies can affect parcellation.
We propose TractCloud, a registration-free framework that performs whole-brain tractography parcellation directly in individual subject space.
arXiv Detail & Related papers (2023-07-18T06:35:12Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
We present an interpretable domain grounded solution to recover the activity of several subcortical regions from multichannel EEG data.
We recover individual spatial and time-frequency patterns of scalp EEG predictive of the hemodynamic signal in the subcortical nuclei.
arXiv Detail & Related papers (2022-10-23T15:11:37Z) - DeepSTI: Towards Tensor Reconstruction using Fewer Orientations in
Susceptibility Tensor Imaging [9.79660375437555]
Susceptibility tensor imaging (STI) is an emerging magnetic resonance imaging technique that characterizes the anisotropic tissue magnetic susceptibility with a second-order tensor model.
STI has the potential to provide information for the reconstruction of white matter fiber pathways and detection of myelin changes in the brain at mm resolution or less.
However, the application of STI in vivo has been hindered by its cumbersome and time-consuming acquisition requirement of measuring susceptibility induced MR phase changes.
arXiv Detail & Related papers (2022-09-09T20:03:53Z) - Superficial White Matter Analysis: An Efficient Point-cloud-based Deep
Learning Framework with Supervised Contrastive Learning for Consistent
Tractography Parcellation across Populations and dMRI Acquisitions [68.41088365582831]
White matter parcellation classifies tractography streamlines into clusters or anatomically meaningful tracts.
Most parcellation methods focus on the deep white matter (DWM), whereas fewer methods address the superficial white matter (SWM) due to its complexity.
We propose a novel two-stage deep-learning-based framework, Superficial White Matter Analysis (SupWMA), that performs an efficient parcellation of 198 SWM clusters from whole-brain tractography.
arXiv Detail & Related papers (2022-07-18T23:07:53Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
This article aims to introduce the deep learning based data driven techniques for fast MRI including convolutional neural network and generative adversarial network based methods.
We will detail the research in coupling physics and data driven models for MRI acceleration.
Finally, we will demonstrate through a few clinical applications, explain the importance of data harmonisation and explainable models for such fast MRI techniques in multicentre and multi-scanner studies.
arXiv Detail & Related papers (2022-04-01T22:48:08Z) - Interpretation of 3D CNNs for Brain MRI Data Classification [56.895060189929055]
We extend the previous findings in gender differences from diffusion-tensor imaging on T1 brain MRI scans.
We provide the voxel-wise 3D CNN interpretation comparing the results of three interpretation methods.
arXiv Detail & Related papers (2020-06-20T17:56:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.