論文の概要: Agentic Retrieval-Augmented Generation for Time Series Analysis
- arxiv url: http://arxiv.org/abs/2408.14484v1
- Date: Sun, 18 Aug 2024 11:47:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-01 16:52:18.360411
- Title: Agentic Retrieval-Augmented Generation for Time Series Analysis
- Title(参考訳): 時系列解析のためのエージェント検索拡張生成
- Authors: Chidaksh Ravuru, Sagar Srinivas Sakhinana, Venkataramana Runkana,
- Abstract要約: 本稿では,時系列解析のためのエージェント検索拡張フレームワークを提案する。
提案したモジュール型マルチエージェントRAGアプローチは、柔軟性を提供し、主要な時系列タスクに対してより最先端のパフォーマンスを実現する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Time series modeling is crucial for many applications, however, it faces challenges such as complex spatio-temporal dependencies and distribution shifts in learning from historical context to predict task-specific outcomes. To address these challenges, we propose a novel approach using an agentic Retrieval-Augmented Generation (RAG) framework for time series analysis. The framework leverages a hierarchical, multi-agent architecture where the master agent orchestrates specialized sub-agents and delegates the end-user request to the relevant sub-agent. The sub-agents utilize smaller, pre-trained language models (SLMs) customized for specific time series tasks through fine-tuning using instruction tuning and direct preference optimization, and retrieve relevant prompts from a shared repository of prompt pools containing distilled knowledge about historical patterns and trends to improve predictions on new data. Our proposed modular, multi-agent RAG approach offers flexibility and achieves state-of-the-art performance across major time series tasks by tackling complex challenges more effectively than task-specific customized methods across benchmark datasets.
- Abstract(参考訳): 時系列モデリングは多くのアプリケーションにおいて重要であるが、複雑な時空間依存や歴史的文脈から学び、タスク固有の結果を予測するための分散シフトといった課題に直面している。
これらの課題に対処するために,時系列解析のためのエージェント検索・拡張生成(RAG)フレームワークを用いた新しい手法を提案する。
このフレームワークは階層的なマルチエージェントアーキテクチャを利用しており、マスターエージェントは特別なサブエージェントを編成し、エンドユーザリクエストを関連するサブエージェントに委譲する。
サブエージェントは、命令チューニングと直接選好最適化を用いた微調整により、特定の時系列タスク用にカスタマイズされた、より小さな、事前訓練された言語モデル(SLM)を使用し、履歴パターンやトレンドに関する蒸留知識を含むプロンプトプールの共有リポジトリから関連するプロンプトを取得して、新しいデータの予測を改善する。
提案するモジュール型マルチエージェントRAGアプローチは,ベンチマークデータセット間のタスク固有のカスタマイズメソッドよりも,複雑な課題に効果的に取り組むことで,大規模時系列タスクにおける最先端のパフォーマンスを実現する。
関連論文リスト
- Building a Multivariate Time Series Benchmarking Datasets Inspired by Natural Language Processing (NLP) [36.01963149343915]
時系列分析のための総合ベンチマークデータセットを作成するための新しい手法を提案する。
多様な、代表的で、挑戦的な時系列データセットをキュレートするプロセスについて議論する。
論文 参考訳(メタデータ) (2024-10-14T16:25:54Z) - Adapt-$\infty$: Scalable Lifelong Multimodal Instruction Tuning via Dynamic Data Selection [89.42023974249122]
Adapt-$infty$は、Lifelong Instruction Tuningの新しいマルチウェイおよびアダプティブデータ選択アプローチである。
勾配に基づくサンプルベクトルをグループ化して擬似スキルクラスタを構築する。
セレクタエキスパートのプールから各スキルクラスタの最高のパフォーマンスデータセレクタを選択する。
論文 参考訳(メタデータ) (2024-10-14T15:48:09Z) - Beyond Forecasting: Compositional Time Series Reasoning for End-to-End Task Execution [19.64976935450366]
時系列データから複雑な多段階推論タスクを処理する新しいタスクであるコンポジション時系列推論を導入する。
具体的には、時系列データに構造的および構成的推論能力を必要とする様々な質問事例に焦点を当てる。
我々は,大規模言語モデル(LLM)を用いて複雑なタスクをプログラムのステップに分解するプログラム支援手法であるTS-Reasonerを開発した。
論文 参考訳(メタデータ) (2024-10-05T06:04:19Z) - Hierarchical Reinforcement Learning for Temporal Abstraction of Listwise Recommendation [51.06031200728449]
我々はmccHRLと呼ばれる新しいフレームワークを提案し、リストワイドレコメンデーションにおける時間的抽象化のレベルを異なるものにする。
階層的な枠組みの中では、ハイレベルエージェントがユーザ知覚の進化を研究し、低レベルエージェントがアイテム選択ポリシーを作成している。
その結果,本手法による性能改善は,いくつかのよく知られたベースラインと比較して有意な結果が得られた。
論文 参考訳(メタデータ) (2024-09-11T17:01:06Z) - Deep Time Series Models: A Comprehensive Survey and Benchmark [74.28364194333447]
時系列データは、現実世界のシナリオにおいて非常に重要である。
近年、時系列コミュニティで顕著なブレークスルーが見られた。
多様な分析タスクのためのディープ時系列モデルの公正なベンチマークとして、時系列ライブラリ(TSLib)をリリースします。
論文 参考訳(メタデータ) (2024-07-18T08:31:55Z) - UniCL: A Universal Contrastive Learning Framework for Large Time Series Models [18.005358506435847]
時系列分析は、金融から医療まで、さまざまな重要なアプリケーションにおいて重要な役割を果たす。
従来の教師付き学習手法は、まず各タスクにおける時系列データの広範なラベルを注釈付けする。
本稿では,時系列基礎モデルの事前学習を目的とした,普遍的でスケーラブルなコントラスト学習フレームワークUniCLを紹介する。
論文 参考訳(メタデータ) (2024-05-17T07:47:11Z) - Large Pre-trained time series models for cross-domain Time series analysis tasks [20.228846068418765]
本稿では,事前学習中に最適なデータセット固有のセグメンテーション戦略を自動的に識別する,テクスタイディショナルセグメンテーションの新たな手法を提案する。
これにより、異なるダウンストリーム時系列分析タスクに微調整され、ゼロショット設定下では、LPTMはドメイン固有の最先端モデルと同等かそれ以上の性能を発揮する。
論文 参考訳(メタデータ) (2023-11-19T20:16:16Z) - TACTiS-2: Better, Faster, Simpler Attentional Copulas for Multivariate Time Series [57.4208255711412]
パウラ理論に基づいて,最近導入されたトランスフォーマーに基づく注目パウラ(TACTiS)の簡易な目的を提案する。
結果から,実世界の予測タスクにまたがって,このモデルのトレーニング性能が大幅に向上し,最先端のパフォーマンスが達成できることが示唆された。
論文 参考訳(メタデータ) (2023-10-02T16:45:19Z) - Few-Shot Forecasting of Time-Series with Heterogeneous Channels [4.635820333232681]
本研究では,時間的埋め込みを組み込んだ置換不変な深部集合ブロックからなるモデルを開発する。
実験を通して、我々のモデルはより単純なシナリオから実行されたベースラインよりも優れた一般化を提供することを示す。
論文 参考訳(メタデータ) (2022-04-07T14:02:15Z) - Sequential Search with Off-Policy Reinforcement Learning [48.88165680363482]
本稿では,RNN学習フレームワークとアテンションモデルからなる,スケーラブルなハイブリッド学習モデルを提案する。
新たな最適化のステップとして、1つのRNNパスに複数の短いユーザシーケンスをトレーニングバッチ内に収める。
また、マルチセッションパーソナライズされた検索ランキングにおける非政治強化学習の利用についても検討する。
論文 参考訳(メタデータ) (2022-02-01T06:52:40Z) - Topology-based Clusterwise Regression for User Segmentation and Demand
Forecasting [63.78344280962136]
本研究は,パブリックおよび新規な商用データ集合を用いて,アナリストがユーザベースをクラスタリングし,詳細なレベルで需要を計画できることを示す。
本研究は,TDAに基づく時系列クラスタリングと行列因数分解法によるクラスタ回帰を実践者にとって実行可能なツールとして導入することを目的とする。
論文 参考訳(メタデータ) (2020-09-08T12:10:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。