論文の概要: A New Era in Computational Pathology: A Survey on Foundation and Vision-Language Models
- arxiv url: http://arxiv.org/abs/2408.14496v3
- Date: Wed, 18 Sep 2024 15:25:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-19 12:25:48.427029
- Title: A New Era in Computational Pathology: A Survey on Foundation and Vision-Language Models
- Title(参考訳): 計算病理学の新しい時代:基礎モデルと視覚言語モデルに関する調査
- Authors: Dibaloke Chanda, Milan Aryal, Nasim Yahya Soltani, Masoud Ganji,
- Abstract要約: ディープラーニングの最近の進歩は、計算病理学(CPath)の領域を変えている。
ファンデーションモデル(FM)とビジョン言語モデル(VLM)を統合することで、病理医の診断ワークフローを変更した。
この調査は、将来におけるFMとVLMの利用を通じて、CPathの現在のトレンドと、その革命の可能性を強調します。
- 参考スコア(独自算出の注目度): 2.7961972519572447
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in deep learning have completely transformed the domain of computational pathology (CPath). More specifically, it has altered the diagnostic workflow of pathologists by integrating foundation models (FMs) and vision-language models (VLMs) in their assessment and decision-making process. The limitations of existing deep learning approaches in CPath can be overcome by FMs through learning a representation space that can be adapted to a wide variety of downstream tasks without explicit supervision. Deploying VLMs allow pathology reports written in natural language be used as rich semantic information sources to improve existing models as well as generate predictions in natural language form. In this survey, a holistic and systematic overview of recent innovations in FMs and VLMs in CPath is presented. Furthermore, the tools, datasets and training schemes for these models are summarized in addition to categorizing them into distinct groups. This extensive survey highlights the current trends in CPath and its possible revolution through the use of FMs and VLMs in the future.
- Abstract(参考訳): ディープラーニングの最近の進歩は、計算病理学(CPath)の領域を完全に変えた。
より具体的には、基礎モデル(FM)と視覚言語モデル(VLM)をその評価と意思決定プロセスに統合することにより、病理医の診断ワークフローを変更した。
CPathにおける既存のディープラーニングアプローチの限界は、明示的な監督なしに様々な下流タスクに適応可能な表現空間を学習することで、FMによって克服することができる。
VLMの展開により、自然言語で書かれた病理報告をリッチなセマンティック情報ソースとして使用して、既存のモデルを改善し、自然言語形式で予測を生成することができる。
本調査では,近年のFM, VLM, CPathの総合的, 体系的な技術革新について概説する。
さらに、これらのモデルのツール、データセット、トレーニングスキームを要約し、異なるグループに分類する。
この広範な調査は、将来におけるFMとVLMの使用によるCPathの現在のトレンドと、その革命の可能性を強調している。
関連論文リスト
- Recent Advances in Multi-Choice Machine Reading Comprehension: A Survey on Methods and Datasets [19.021200954913482]
この分析は、30の既存のクローゼスタイルとマルチチョイスMCCベンチマークデータセットに展開されている。
本稿では,最近の手法を細調整法とプロンプト調整法に分類する。
論文 参考訳(メタデータ) (2024-08-04T18:57:21Z) - Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
検索エンハンスメントは機械学習(ML)の幅広い範囲に拡張できる
この研究は、MLの様々な領域の文献を、現在の文献から欠落している一貫した表記で合成することで、このパラダイムの正式なフレームワークであるRetrieval-Enhanced Machine Learning (REML)を導入する。
本研究の目的は、様々な分野の研究者に対して、検索強化モデルの包括的、正式に構造化された枠組みを付与し、学際的な将来の研究を促進することである。
論文 参考訳(メタデータ) (2024-07-17T20:01:21Z) - Probing the Decision Boundaries of In-context Learning in Large Language Models [31.977886254197138]
本稿では,テキスト内二項分類のための決定境界のレンズからテキスト内学習を探索し,理解するための新しいメカニズムを提案する。
驚いたことに、単純な二項分類タスクにおいて、現在のLLMによって学習される決定境界は、しばしば不規則で非滑らかである。
論文 参考訳(メタデータ) (2024-06-17T06:00:24Z) - Recent Advances of Foundation Language Models-based Continual Learning: A Survey [31.171203978742447]
基礎言語モデル (LM) は自然言語処理 (NLP) とコンピュータビジョン (CV) の分野において重要な成果を上げている。
しかし、破滅的な忘れ物のため、人間のような継続的学習をエミュレートすることはできない。
従来の知識を忘れずに新しいタスクに適応できるように、様々な連続学習(CL)ベースの方法論が開発されている。
論文 参考訳(メタデータ) (2024-05-28T23:32:46Z) - Towards the Unification of Generative and Discriminative Visual
Foundation Model: A Survey [30.528346074194925]
視覚基礎モデル(VFM)はコンピュータビジョンの基盤となる発展の触媒となっている。
本稿では,VFMの重要軌道を概説し,その拡張性と生成タスクの熟練性を強調した。
今後のイノベーションの重要な方向は、生成的および差別的パラダイムの融合である。
論文 参考訳(メタデータ) (2023-12-15T19:17:15Z) - Towards Graph Foundation Models: A Survey and Beyond [66.37994863159861]
ファンデーションモデルは、さまざまな人工知能アプリケーションにおいて重要なコンポーネントとして現れてきた。
基礎モデルがグラフ機械学習研究者を一般化し、適応させる能力は、新しいグラフ学習パラダイムを開発する可能性について議論する。
本稿では,グラフ基礎モデル(GFM)の概念を紹介し,その重要な特徴と基礎技術について概説する。
論文 参考訳(メタデータ) (2023-10-18T09:31:21Z) - Learn From Model Beyond Fine-Tuning: A Survey [78.80920533793595]
Learn From Model (LFM) は、モデルインターフェースに基づいた基礎モデル(FM)の研究、修正、設計に焦点を当てている。
LFM技術の研究は、モデルチューニング、モデル蒸留、モデル再利用、メタラーニング、モデル編集の5つの分野に大別できる。
本稿では, LFM の観点から, FM に基づく現在の手法を概観する。
論文 参考訳(メタデータ) (2023-10-12T10:20:36Z) - SINC: Self-Supervised In-Context Learning for Vision-Language Tasks [64.44336003123102]
大規模言語モデルにおけるコンテキスト内学習を実現するためのフレームワークを提案する。
メタモデルは、カスタマイズされたデモからなる自己教師型プロンプトで学ぶことができる。
実験の結果、SINCは様々な視覚言語タスクにおいて勾配に基づく手法よりも優れていた。
論文 参考訳(メタデータ) (2023-07-15T08:33:08Z) - Semi-Supervised and Unsupervised Deep Visual Learning: A Survey [76.2650734930974]
半教師なし学習と教師なし学習は、ラベルなしの視覚データから学ぶための有望なパラダイムを提供する。
本稿では, 半教師付き学習(SSL)と非教師付き学習(UL)の先進的な深層学習アルゴリズムについて, 統一的な視点による視覚的認識について概説する。
論文 参考訳(メタデータ) (2022-08-24T04:26:21Z) - Information Extraction in Low-Resource Scenarios: Survey and Perspective [56.5556523013924]
情報抽出は構造化されていないテキストから構造化された情報を導き出そうとする。
本稿では,emphLLMおよびemphLLMに基づく低リソースIEに対するニューラルアプローチについて概説する。
論文 参考訳(メタデータ) (2022-02-16T13:44:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。