論文の概要: Aiding Humans in Financial Fraud Decision Making: Toward an XAI-Visualization Framework
- arxiv url: http://arxiv.org/abs/2408.14552v1
- Date: Mon, 26 Aug 2024 18:10:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-28 17:51:48.937729
- Title: Aiding Humans in Financial Fraud Decision Making: Toward an XAI-Visualization Framework
- Title(参考訳): ファイナンシャル・フラッド意思決定における人間支援--XAI-Visualization Frameworkを目指して
- Authors: Angelos Chatzimparmpas, Evanthia Dimara,
- Abstract要約: 金融詐欺捜査員は、大量の構造化されていない情報を手動で合成するという課題に直面している。
現在のVisual Analyticsシステムは、主にこのプロセスの独立した側面をサポートしている。
本稿では,金融不正調査のあらゆる段階において,VAシステムが意思決定者を支援する枠組みを提案する。
- 参考スコア(独自算出の注目度): 6.040452803295326
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: AI prevails in financial fraud detection and decision making. Yet, due to concerns about biased automated decision making or profiling, regulations mandate that final decisions are made by humans. Financial fraud investigators face the challenge of manually synthesizing vast amounts of unstructured information, including AI alerts, transaction histories, social media insights, and governmental laws. Current Visual Analytics (VA) systems primarily support isolated aspects of this process, such as explaining binary AI alerts and visualizing transaction patterns, thus adding yet another layer of information to the overall complexity. In this work, we propose a framework where the VA system supports decision makers throughout all stages of financial fraud investigation, including data collection, information synthesis, and human criteria iteration. We illustrate how VA can claim a central role in AI-aided decision making, ensuring that human judgment remains in control while minimizing potential biases and labor-intensive tasks.
- Abstract(参考訳): AIは金融詐欺の検出と意思決定で優位である。
しかし、バイアスのある自動意思決定やプロファイリングに関する懸念のため、規制は人間による最終決定を義務付けている。
金融詐欺捜査員は、AIアラート、トランザクション履歴、ソーシャルメディアの洞察、政府法など、膨大な量の構造化されていない情報を手動で合成するという課題に直面している。
現在のVisual Analytics(VA)システムは、バイナリAIアラートの説明やトランザクションパターンの可視化など、このプロセスの分離された側面を主にサポートしている。
本研究では,データ収集,情報合成,人間基準の反復など,金融不正調査のあらゆる段階において,VAシステムが意思決定者を支援する枠組みを提案する。
VAがAI支援による意思決定における中心的な役割を主張し、潜在的なバイアスや労働集約的なタスクを最小限にしながら、人間の判断が制御されていることを確実にする方法について説明する。
関連論文リスト
- Combining AI Control Systems and Human Decision Support via Robustness and Criticality [53.10194953873209]
我々は、逆説(AE)の方法論を最先端の強化学習フレームワークに拡張する。
学習したAI制御システムは、敵のタンパリングに対する堅牢性を示す。
トレーニング/学習フレームワークでは、この技術は人間のインタラクションを通じてAIの決定と説明の両方を改善することができる。
論文 参考訳(メタデータ) (2024-07-03T15:38:57Z) - Explainable Automated Machine Learning for Credit Decisions: Enhancing
Human Artificial Intelligence Collaboration in Financial Engineering [0.0]
本稿では、金融工学領域における説明可能な自動機械学習(AutoML)の統合について検討する。
AutoMLは、クレジットスコアリングのための堅牢な機械学習モデルの開発を合理化する方法に重点を置いている。
この調査結果は、AI主導の金融決定の透明性と説明責任を改善する上で、説明可能なAutoMLの可能性を強調している。
論文 参考訳(メタデータ) (2024-02-06T08:47:16Z) - Online Decision Mediation [72.80902932543474]
意思決定支援アシスタントを学習し、(好奇心)専門家の行動と(不完全)人間の行動の仲介役として機能することを検討する。
臨床診断では、完全に自律的な機械行動は倫理的余裕を超えることが多い。
論文 参考訳(メタデータ) (2023-10-28T05:59:43Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
人間中心のアプローチでAIアプリケーションを開発する必要性には、ある程度のコンセンサスがある。
i)ユーティリティと社会的善、(ii)プライバシとデータ所有、(iii)透明性と説明責任、(iv)AIによる意思決定プロセスの公正性。
異種情報ソースに基づく現在のマルチモーダルアルゴリズムは、データ中の機密要素や内部バイアスによってどのように影響を受けるかを検討する。
論文 参考訳(メタデータ) (2023-02-13T16:44:44Z) - Causal Fairness Analysis [68.12191782657437]
意思決定設定における公平性の問題を理解し、モデル化し、潜在的に解決するためのフレームワークを導入します。
我々のアプローチの主な洞察は、観測データに存在する格差の定量化と、基礎となる、しばしば観測されていない、因果的なメカニズムの収集を結びつけることである。
本研究は,文献中の異なる基準間の関係を整理し,説明するための最初の体系的試みであるフェアネスマップにおいて,本研究の成果を左右するものである。
論文 参考訳(メタデータ) (2022-07-23T01:06:34Z) - The Conflict Between Explainable and Accountable Decision-Making
Algorithms [10.64167691614925]
意思決定アルゴリズムは、誰が医療プログラムに登録され、雇用されるべきかといった重要な決定に使われています。
XAIイニシアチブは、法的要件に準拠し、信頼を促進し、説明責任を維持するために、アルゴリズムを説明可能にすることを目的としている。
本稿では,自律型AIシステムによって引き起こされる責任問題の解決に,説明可能性がどの程度役立つのかを問う。
論文 参考訳(メタデータ) (2022-05-11T07:19:28Z) - Inverse Online Learning: Understanding Non-Stationary and Reactionary
Policies [79.60322329952453]
エージェントが意思決定を行う方法の解釈可能な表現を開発する方法を示す。
一連の軌跡に基づく意思決定プロセスを理解することにより,このオンライン学習問題に対して,政策推論問題を逆問題とみなした。
本稿では、エージェントがそれらを更新するプロセスと並行して、その影響を遡及的に推定する実用的なアルゴリズムを提案する。
UNOSの臓器提供受諾決定の分析に応用することで、我々のアプローチは意思決定プロセスを管理する要因や時間とともにどのように変化するかに、貴重な洞察をもたらすことができることを実証する。
論文 参考訳(メタデータ) (2022-03-14T17:40:42Z) - AI Assurance using Causal Inference: Application to Public Policy [0.0]
ほとんどのAIアプローチは、"ブラックボックス"としてのみ表現することができ、透明性の欠如に悩まされる。
効果的で堅牢なAIシステムを開発するだけでなく、内部プロセスが説明可能で公平であることを確認することも重要です。
論文 参考訳(メタデータ) (2021-12-01T16:03:06Z) - Reviewable Automated Decision-Making: A Framework for Accountable
Algorithmic Systems [1.7403133838762448]
本稿では,adm(automated and algorithmic decision-making)のアカウンタビリティ向上のためのフレームワークとして,reviewabilityを提案する。
我々は、ADMを人間と技術の両方の要素を含む社会技術的プロセスであると理解し、決定が下される前に開始し、決定そのものを超えて拡張する。
我々は、人間の意思決定をレビューする行政法のアプローチに基づいたレビュー可能性枠組みは、admに対してより包括的かつ法的に関連のある説明責任の形式を進めるための実用的な方法であると主張する。
論文 参考訳(メタデータ) (2021-01-26T18:15:34Z) - Bias in Multimodal AI: Testbed for Fair Automatic Recruitment [73.85525896663371]
異種情報ソースに基づく現在のマルチモーダルアルゴリズムは、データ中の機密要素や内部バイアスによってどのように影響を受けるかを検討する。
我々は、性別や人種の偏りを意識的に評価したマルチモーダルな合成プロファイルを用いて、自動求人アルゴリズムを訓練する。
我々の方法論と結果は、一般により公平なAIベースのツール、特により公平な自動採用システムを生成する方法を示している。
論文 参考訳(メタデータ) (2020-04-15T15:58:05Z) - Bias in Data-driven AI Systems -- An Introductory Survey [37.34717604783343]
この調査は、(大きな)データと強力な機械学習(ML)アルゴリズムによって、AIの大部分は、データ駆動型AIに重点を置いている。
さもなければ、一般的な用語バイアスを使ってデータの収集や処理に関連する問題を説明します。
論文 参考訳(メタデータ) (2020-01-14T09:39:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。