論文の概要: Generative AI in Financial Institution: A Global Survey of Opportunities, Threats, and Regulation
- arxiv url: http://arxiv.org/abs/2504.21574v1
- Date: Wed, 30 Apr 2025 12:25:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-09 18:56:53.567945
- Title: Generative AI in Financial Institution: A Global Survey of Opportunities, Threats, and Regulation
- Title(参考訳): 金融機関におけるジェネレーティブAI:機会、脅威、規制のグローバル調査
- Authors: Bikash Saha, Nanda Rani, Sandeep Kumar Shukla,
- Abstract要約: ジェネレーティブ・人工知能(GenAI)は、グローバルな金融環境を急速に変えつつある。
この調査は、金融エコシステム全体でのGenAI採用の概要を提供する。
我々は、AI生成フィッシング、ディープフェイク対応詐欺、AIシステムに対する敵攻撃など、新たな脅威について議論する。
- 参考スコア(独自算出の注目度): 3.410195565199523
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative Artificial Intelligence (GenAI) is rapidly reshaping the global financial landscape, offering unprecedented opportunities to enhance customer engagement, automate complex workflows, and extract actionable insights from vast financial data. This survey provides an overview of GenAI adoption across the financial ecosystem, examining how banks, insurers, asset managers, and fintech startups worldwide are integrating large language models and other generative tools into their operations. From AI-powered virtual assistants and personalized financial advisory to fraud detection and compliance automation, GenAI is driving innovation across functions. However, this transformation comes with significant cybersecurity and ethical risks. We discuss emerging threats such as AI-generated phishing, deepfake-enabled fraud, and adversarial attacks on AI systems, as well as concerns around bias, opacity, and data misuse. The evolving global regulatory landscape is explored in depth, including initiatives by major financial regulators and international efforts to develop risk-based AI governance. Finally, we propose best practices for secure and responsible adoption - including explainability techniques, adversarial testing, auditability, and human oversight. Drawing from academic literature, industry case studies, and policy frameworks, this chapter offers a perspective on how the financial sector can harness GenAI's transformative potential while navigating the complex risks it introduces.
- Abstract(参考訳): Generative Artificial Intelligence(GenAI)は、顧客のエンゲージメントを高め、複雑なワークフローを自動化し、巨大な金融データから実行可能な洞察を抽出する前例のない機会を提供する、グローバルな金融環境を急速に再構築している。
この調査は、金融エコシステム全体にわたるGenAI導入の概要を提供し、銀行、保険会社、資産運用会社、フィンテックスタートアップが、どのようにして大規模な言語モデルやその他の生成ツールを運用に組み込んでいるかを調査する。
AIを利用したバーチャルアシスタントやパーソナライズされた金融アドバイザリー、不正検出やコンプライアンス自動化など、GenAIは機能横断のイノベーションを推進している。
しかし、この変革には重大なサイバーセキュリティと倫理的リスクが伴う。
我々は、AI生成フィッシング、ディープフェイク対応詐欺、AIシステムに対する敵攻撃などの新興脅威、バイアス、不透明感、データ誤用に関する懸念について議論する。
グローバル規制の展望は、主要な金融規制当局による取り組みや、リスクベースのAIガバナンスを開発する国際的な取り組みなど、深く調査されている。
最後に、説明可能性技術、敵対的テスト、監査可能性、人間の監視を含む、安全で責任ある採用のためのベストプラクティスを提案する。
本章では、学術文献、産業事例研究、政策枠組みを参考に、金融セクターが、導入する複雑なリスクをナビゲートしながら、GenAIの変革的ポテンシャルをどのように活用できるかを考察する。
関連論文リスト
- In-House Evaluation Is Not Enough: Towards Robust Third-Party Flaw Disclosure for General-Purpose AI [93.33036653316591]
我々はシステムの安全性を高めるために3つの介入を要求します。
まず、標準化されたAI欠陥レポートと研究者へのエンゲージメントのルールを用いることを提案する。
第2に,GPAIシステムプロバイダが広視野欠陥開示プログラムを採用することを提案する。
第3に,欠陥報告の分布を調整するための改良されたインフラの開発を提唱する。
論文 参考訳(メタデータ) (2025-03-21T05:09:46Z) - AILuminate: Introducing v1.0 of the AI Risk and Reliability Benchmark from MLCommons [62.374792825813394]
本稿ではAI製品リスクと信頼性を評価するための業界標準ベンチマークとして,AIluminate v1.0を紹介する。
このベンチマークは、危険、違法、または望ましくない行動を12の危険カテゴリーで引き起こすように設計されたプロンプトに対するAIシステムの抵抗を評価する。
論文 参考訳(メタデータ) (2025-02-19T05:58:52Z) - Safety is Essential for Responsible Open-Ended Systems [47.172735322186]
オープンエンドレスネス(Open-Endedness)とは、AIシステムが新規で多様なアーティファクトやソリューションを継続的に自律的に生成する能力である。
このポジションペーパーは、Open-Ended AIの本質的に動的で自己伝播的な性質は、重大な、未発見のリスクをもたらすと主張している。
論文 参考訳(メタデータ) (2025-02-06T21:32:07Z) - Artificial intelligence and cybersecurity in banking sector: opportunities and risks [0.0]
機械学習(ML)により、システムは巨大なデータセットに適応し、学習することができる。
この研究は、悪意のあるユーザーが使用できるAIツールのデュアルユース性を強調している。
この論文は、セキュリティ、信頼、レジリエンス、堅牢性といった重要な特徴を持つ機械学習モデルを開発することの重要性を強調している。
論文 参考訳(メタデータ) (2024-11-28T22:09:55Z) - The Role of AI in Financial Forecasting: ChatGPT's Potential and Challenges [0.9217021281095907]
金融セクター、特に財務予測における人工知能(AI)の将来への展望。
ディープラーニング、強化学習、BlockchAInとモノのインターネットとの統合など、AI技術のダイナミクス。
AIの統合は、金融セクターにおける規制と倫理上の問題、およびデータプライバシ保護の意義に挑戦する。
論文 参考訳(メタデータ) (2024-11-07T15:35:16Z) - Redefining Finance: The Influence of Artificial Intelligence (AI) and Machine Learning (ML) [2.3931689873603594]
技術の急速な変革により、金融における人工知能(AI)と機械学習(ML)の融合はエコシステム全体を混乱させています。
金融機関は、リテールバンキング、ウェルスマネジメント、コーポレートバンキングと決済のエコシステムに大きく影響を受けている。
論文 参考訳(メタデータ) (2024-10-21T12:32:17Z) - Attack Atlas: A Practitioner's Perspective on Challenges and Pitfalls in Red Teaming GenAI [52.138044013005]
生成AI、特に大規模言語モデル(LLM)は、製品アプリケーションにますます統合される。
新たな攻撃面と脆弱性が出現し、自然言語やマルチモーダルシステムにおける敵の脅威に焦点を当てる。
レッドチーム(英語版)はこれらのシステムの弱点を積極的に識別する上で重要となり、ブルーチーム(英語版)はそのような敵の攻撃から保護する。
この研究は、生成AIシステムの保護のための学術的な洞察と実践的なセキュリティ対策のギャップを埋めることを目的としている。
論文 参考訳(メタデータ) (2024-09-23T10:18:10Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
我々は、大規模社会被害、悪意のある使用、自律型AIシステムに対する人間の制御の不可逆的な喪失を含むリスクについて説明する。
このようなリスクがどのように発生し、どのように管理するかについては、合意の欠如があります。
現在のガバナンスイニシアチブには、誤用や無謀を防ぎ、自律システムにほとんど対処するメカニズムや制度が欠けている。
論文 参考訳(メタデータ) (2023-10-26T17:59:06Z) - The AI Revolution: Opportunities and Challenges for the Finance Sector [12.486180180030964]
金融セクターにおけるAIの応用は、業界を変えつつある。
しかしながら、これらのメリットに加えて、AIはいくつかの課題も提示する。
これには透明性、解釈可能性、公正性、説明責任、信頼性に関する問題が含まれる。
金融セクターにおけるAIの使用は、データプライバシとセキュリティに関する重要な疑問をさらに引き起こす。
このニーズをグローバルに認識しているにもかかわらず、金融におけるAIの使用に関する明確なガイドラインや法律はいまだに存在しない。
論文 参考訳(メタデータ) (2023-08-31T08:30:09Z) - A Brief Overview of AI Governance for Responsible Machine Learning
Systems [3.222802562733787]
このポジションペーパーは、AIの責任ある使用を監督するように設計されたフレームワークである、AIガバナンスの簡単な紹介を提案する。
AIの確率的性質のため、それに関連するリスクは従来の技術よりもはるかに大きい。
論文 参考訳(メタデータ) (2022-11-21T23:48:51Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable
Claims [59.64274607533249]
AI開発者は、責任を負うことのできる検証可能な主張をする必要がある。
このレポートは、さまざまな利害関係者がAIシステムに関するクレームの妥当性を改善するための様々なステップを示唆している。
我々は、この目的のための10のメカニズム、すなわち、組織、ソフトウェア、ハードウェアを分析し、それらのメカニズムの実装、探索、改善を目的とした推奨を行う。
論文 参考訳(メタデータ) (2020-04-15T17:15:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。