論文の概要: EVINCE: Optimizing Adversarial LLM Dialogues via Conditional Statistics and Information Theory
- arxiv url: http://arxiv.org/abs/2408.14575v3
- Date: Tue, 26 Nov 2024 02:30:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-28 15:23:50.235818
- Title: EVINCE: Optimizing Adversarial LLM Dialogues via Conditional Statistics and Information Theory
- Title(参考訳): EVINCE:条件統計と情報理論による逆LLM対話の最適化
- Authors: Edward Y. Chang,
- Abstract要約: 本稿では,条件付き統計と情報理論を用いたマルチLLM対話を最適化するフレームワークEVINCEを紹介する。
疾患診断からニュースデバイアスに至るまで,単一LLMよりも一貫した改善が見られた。
- 参考スコア(独自算出の注目度): 2.5200794639628032
- License:
- Abstract: This paper introduces EVINCE (Entropy and Variation IN Conditional Exchanges), a framework that optimizes multi-LLM dialogues using conditional statistics and information theory. EVINCE introduces dual entropy optimization to balance perspective diversity with prior knowledge, providing quantitative measures for modulating LLM interactions. Through information-theoretic metrics and mutual information optimization, the framework demonstrates consistent improvement over single-LLM performance in applications ranging from disease diagnosis to news debiasing. We present theoretical foundations and empirical validation for this structured approach to LLM collaboration.
- Abstract(参考訳): 本稿では,条件統計と情報理論を用いて複数LLM対話を最適化するEVINCE(Entropy and Variation in Conditional Exchanges)を提案する。
EVINCEは、視点の多様性と事前知識のバランスをとるために二重エントロピー最適化を導入し、LLM相互作用を調整するための定量的尺度を提供する。
このフレームワークは、情報理論のメトリクスと相互情報最適化を通じて、病気の診断からニュースの偏りに至るまでのアプリケーションにおいて、単一LLMの性能よりも一貫した改善を示す。
この構造的アプローチの理論的基礎と実証的検証をLLMコラボレーションに提示する。
関連論文リスト
- On the Comparison between Multi-modal and Single-modal Contrastive Learning [50.74988548106031]
マルチモーダルとシングルモーダルのコントラスト学習の違いを理解するための理論的基盤を導入する。
マルチモーダル・シングルモーダル・コントラッシブ・ラーニングの下流タスクにおける一般化に影響を及ぼす臨界因子,すなわち信号対雑音比(SNR)を同定する。
我々の分析は、単一モードと多モードのコントラスト学習の最適化と一般化を特徴付ける統一的なフレームワークを提供する。
論文 参考訳(メタデータ) (2024-11-05T06:21:17Z) - The Ultimate Guide to Fine-Tuning LLMs from Basics to Breakthroughs: An Exhaustive Review of Technologies, Research, Best Practices, Applied Research Challenges and Opportunities [0.35998666903987897]
本稿では,Large Language Models (LLM) の微調整について検討する。
従来の自然言語処理(NLP)モデルから、AIにおける彼らの重要な役割まで、LLMの歴史的進化を概説している。
本報告では, 微調整LDMのための構造化7段パイプラインについて紹介する。
論文 参考訳(メタデータ) (2024-08-23T14:48:02Z) - TRACE: TRansformer-based Attribution using Contrastive Embeddings in LLMs [50.259001311894295]
TRACE と呼ばれるコントラスト埋め込みを用いた新しいTRansformer-based Attribution フレームワークを提案する。
TRACEは情報源の属性を精度良く改善し,大規模言語モデルの信頼性と信頼性を高める貴重なツールであることを示す。
論文 参考訳(メタデータ) (2024-07-06T07:19:30Z) - Chain-of-Thought Prompting for Demographic Inference with Large Multimodal Models [58.58594658683919]
大規模マルチモーダルモデル (LMM) は、様々な研究課題において変換可能性を示している。
以上の結果から,LMMはゼロショット学習,解釈可能性,未修正入力の処理に長所があることが示唆された。
本稿では,目標外予測問題を効果的に緩和するChain-of-Thought拡張プロンプト手法を提案する。
論文 参考訳(メタデータ) (2024-05-24T16:26:56Z) - Enhancing Decision-Making in Optimization through LLM-Assisted Inference: A Neural Networks Perspective [1.0420394952839245]
本稿では,生成型AI(GenAI)と進化型アルゴリズム(EA)のシームレスな統合について検討する。
大規模言語モデル(LLM)の変換的役割に着目し,LLM支援推論による意思決定プロセスの自動化と向上の可能性について検討した。
論文 参考訳(メタデータ) (2024-05-12T08:22:53Z) - Large Language Models and Causal Inference in Collaboration: A Comprehensive Survey [46.4375135354838]
因果推論は、自然言語処理(NLP)モデルの予測精度、公正性、堅牢性、説明可能性を高める可能性を示している。
生成型Large Language Models(LLM)の出現は、様々なNLPドメインに大きな影響を与えている。
論文 参考訳(メタデータ) (2024-03-14T17:47:20Z) - Discovery of the Hidden World with Large Language Models [95.58823685009727]
本稿では,大きな言語モデル(LLM)を導入してギャップを埋めるCausal representatiOn AssistanT(COAT)を提案する。
LLMは世界中の大規模な観測に基づいて訓練されており、構造化されていないデータから重要な情報を抽出する優れた能力を示している。
COATはまた、特定変数間の因果関係を見つけるためにCDを採用し、提案された要因を反復的に洗練するためにLSMにフィードバックを提供する。
論文 参考訳(メタデータ) (2024-02-06T12:18:54Z) - EpiK-Eval: Evaluation for Language Models as Epistemic Models [16.485951373967502]
セグメンテッドな物語から一貫した知識表現を定式化する上で,LLMの習熟度を評価するための新しい質問答えベンチマークであるEpiK-Evalを紹介する。
これらの欠点は、一般的な訓練目的の本質的な性質に起因していると論じる。
本研究の成果は,より堅牢で信頼性の高いLCMを開発する上での洞察を与えるものである。
論文 参考訳(メタデータ) (2023-10-23T21:15:54Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
ニュース見出しを用いて,ChatGPTのような大規模言語モデル(LLM)の株価変動を予測する能力について述べる。
我々は,情報容量制約,過小反応,制限対アビタージュ,LLMを組み込んだ理論モデルを構築した。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。