論文の概要: Modeling Atomistically Assembled Diffractive Optics in Solids
- arxiv url: http://arxiv.org/abs/2408.14651v1
- Date: Mon, 26 Aug 2024 21:33:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-28 15:34:19.163697
- Title: Modeling Atomistically Assembled Diffractive Optics in Solids
- Title(参考訳): 固体中の原子集合型回折光学のモデリング
- Authors: Trevor Kling, Dong-yeop Na, Mahdi Hosseini,
- Abstract要約: 固体ホスト材料中の光中心の2次元周期格子および非周期格子における長距離原子-原子相互作用を記述するモデルを構築した。
システム内の共振格子からの指向性散乱の最大3倍の増大を観測する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop a model describing long-range atom-atom interactions in a two-dimensional periodic or aperiodic lattice of optical centers inside a solid-state host material. We consider realistic environmental and technical conditions such as frequency and position broadening. Even when considering a significant frequency broadening in the ensemble (approximately 300 GHz), we observe up to a three-fold increase in directional scattering from the resonant lattice in a system. The model can be used to scalably design quantum optical elements, e.g. a quantum lens, harnessing atomistic engineering (e.g. via ion implantation) of collective interactions in materials to enhance quantum properties.
- Abstract(参考訳): 固体ホスト材料中の光中心の2次元周期格子および非周期格子における長距離原子-原子相互作用を記述するモデルを構築した。
周波数や位置の拡充など,現実的な環境・技術条件について検討する。
アンサンブル(約300GHz)における有意な周波数拡大を考慮した場合であっても,システム内の共振格子からの指向性散乱の最大3倍の増大が観測される。
このモデルは、例えば量子レンズのような量子光学素子を、材料中の集合相互作用の原子工学(例えばイオン注入)を活用して、量子特性を高めるために、シャープに設計することができる。
関連論文リスト
- Correlated relaxation and emerging entanglement in arrays of $Λ$-type atoms [83.88591755871734]
原子の絡み合いは緩和の過程で現れ、系の最終的な定常状態に持続することを示す。
本研究は, 発散による絡み合いを解消する新しい方法である。
論文 参考訳(メタデータ) (2024-11-11T08:39:32Z) - Topological photon pumping in quantum optical systems [0.0]
完全結合型ライス・ミールモデルの拡張版を導入する。
我々は1次元エミッタ鎖上の光子のトポロジカル保護および分散無分散輸送を数値的に示す。
論文 参考訳(メタデータ) (2024-04-08T14:45:42Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
相互作用系の目印の1つは、多粒子境界状態の形成である。
我々は,スピン-1/2 XXZモデルの周期量子回路を実装した高忠実度パラメータ化可能なfSimゲートを開発した。
マイクロ波光子を隣接量子ビット上に配置することにより、これらの励起の伝播を研究し、最大5個の光子の結合特性を観察する。
論文 参考訳(メタデータ) (2022-06-10T17:52:29Z) - Correlated steady states and Raman lasing in continuously pumped and
probed atomic ensembles [68.8204255655161]
我々は、継続的に光学的に励起され、探査されるアルカリ原子のアンサンブルを考える。
大きな光学深度での光子の集団散乱のため、原子の定常状態は非相関なテンソル生成状態に対応しない。
超ラジアントレーザーのモデルに類似したラマンラシングの機構を発見し,特徴付けする。
論文 参考訳(メタデータ) (2022-05-10T06:54:54Z) - Giant Atoms in a Synthetic Frequency Dimension [7.9675459910390805]
本稿では, 動的変調超伝導共振器と3層人工原子を共振器として, 合成周波数次元で巨大原子を合成する方法を提案する。
解析計算と数値計算の両方で、我々の計画と実空間の2段階の巨大原子との良好な一致が示される。
論文 参考訳(メタデータ) (2021-11-10T09:18:17Z) - Stochastic Variational Approach to Small Atoms and Molecules Coupled to
Quantum Field Modes [55.41644538483948]
空洞QEDの量子場に結合した少数の粒子系のエネルギーと波動関数の変動計算(SVM)を提案する。
2次元のトライアン電子や閉じ込められた電子、He原子や水素分子の例を示す。
論文 参考訳(メタデータ) (2021-08-25T13:40:42Z) - Extensible quantum simulation architecture based on atom-photon bound
states in an array of high-impedance resonators [0.0]
フォトニック格子は、フォトニックバンドギャップ内で長寿命の原子-光子結合状態をシードすることができる。
本稿では、小型で高インピーダンスの超伝導共振器からなるマイクロ波アーキテクチャの概念と実装について述べる。
2つの原子-光子結合状態間のコヒーレントな相互作用を、SWAPとCZの2量子ゲートの実装に適した共振系と分散系の両方で示す。
論文 参考訳(メタデータ) (2021-07-14T17:10:27Z) - Engineering multipartite entangled states in doubly pumped parametric
down-conversion processes [68.8204255655161]
2モード駆動の$chi(2) $媒体における光パラメトリックダウンコンバージョンにより生成される量子状態について検討する。
この分析は、プロセスによって生成されるモードのサブセットにおいて、多部、すなわち3部または4部、絡み合った状態の出現を示す。
論文 参考訳(メタデータ) (2020-07-23T13:53:12Z) - Hyperentanglement in structured quantum light [50.591267188664666]
光の自由度が1つ以上の高次元量子系の絡み合いは、情報容量を増大させ、新しい量子プロトコルを可能にする。
本稿では、時間周波数およびベクトル渦構造モードで符号化された高次元・耐雑音性ハイパーエンタングル状態の関数的情報源を示す。
我々は2光子干渉と量子状態トモグラフィーによって特徴付けるテレコム波長で高い絡み合った光子対を生成し、ほぼ均一な振動と忠実さを達成する。
論文 参考訳(メタデータ) (2020-06-02T18:00:04Z) - Quantum simulation of extended polaron models using compound atom-ion
systems [0.0]
強電子-フォノン結合を示す凝縮物質モデルの量子シミュレーションの可能性を検討する。
一般システムを記述した実効ハミルトニアンを導出し、起伏するエネルギースケールについて議論する。
典型的な実験的な現実的なシステムでは、フォノンとの結合は小さいが、我々はその役割を強化する手段を提供する。
論文 参考訳(メタデータ) (2020-05-18T12:18:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。