論文の概要: Circumventing Traps in Analog Quantum Machine Learning Algorithms Through Co-Design
- arxiv url: http://arxiv.org/abs/2408.14697v1
- Date: Mon, 26 Aug 2024 23:52:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-28 15:24:16.426894
- Title: Circumventing Traps in Analog Quantum Machine Learning Algorithms Through Co-Design
- Title(参考訳): 共設計によるアナログ量子機械学習アルゴリズムの精度向上
- Authors: Rodrigo Araiza Bravo, Jorge Garcia Ponce, Hong-ye Hu, Susanne F. Yelin,
- Abstract要約: アンザッツのマグナス展開を用いた一元進化シミュレーションのためのAQMLアルゴリズムの共設計法を示す。
AQMLアルゴリズムの適用性を確保するためには,このような共同設計が必要であると結論付けている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum machine learning QML algorithms promise to deliver near-term, applicable quantum computation on noisy, intermediate-scale systems. While most of these algorithms leverage quantum circuits for generic applications, a recent set of proposals, called analog quantum machine learning (AQML) algorithms, breaks away from circuit-based abstractions and favors leveraging the natural dynamics of quantum systems for computation, promising to be noise-resilient and suited for specific applications such as quantum simulation. Recent AQML studies have called for determining best ansatz selection practices and whether AQML algorithms have trap-free landscapes based on theory from quantum optimal control (QOC). We address this call by systematically studying AQML landscapes on two models: those admitting black-boxed expressivity and those tailored to simulating a specific unitary evolution. Numerically, the first kind exhibits local traps in their landscapes, while the second kind is trap-free. However, both kinds violate QOC theory's key assumptions for guaranteeing trap-free landscapes. We propose a methodology to co-design AQML algorithms for unitary evolution simulation using the ansatz's Magnus expansion. We show favorable convergence in simulating dynamics with applications to metrology and quantum chemistry. We conclude that such co-design is necessary to ensure the applicability of AQML algorithms.
- Abstract(参考訳): 量子機械学習のQMLアルゴリズムは、ノイズの多い中間スケールシステム上で、短期的に適用可能な量子計算を提供することを約束する。
これらのアルゴリズムの多くは汎用的な用途に量子回路を利用するが、最近の一連の提案はアナログ量子機械学習(AQML)アルゴリズムと呼ばれ、回路ベースの抽象化から脱却し、量子システムの自然力学を計算に活用することを好んでいる。
近年のAQML研究は、量子最適制御(QOC)の理論に基づいて、最適なアンザッツ選択の実践と、AQMLアルゴリズムがトラップレスランドスケープを持つかどうかを決定することを求めている。
このコールは、ブラックボックス表現を許容するモデルと、特定のユニタリ進化をシミュレートしたモデルであるAQMLランドスケープを2つのモデルで体系的に研究することで解決する。
数値的には、第1種は風景に局所的なトラップを示し、第2種はトラップフリーである。
しかし、どちらの種もトラップのない景観を保証するためのQOC理論の重要な前提に反する。
アンザッツのマグナス展開を用いた一元進化シミュレーションのためのAQMLアルゴリズムの共設計手法を提案する。
我々は、力学のシミュレーションにおける良好な収束と、気象学および量子化学への応用を示す。
AQMLアルゴリズムの適用性を確保するためには,このような共同設計が必要であると結論付けている。
関連論文リスト
- Multi-reference Quantum Davidson Algorithm for Quantum Dynamics [3.3869539907606603]
Quantum Krylov Subspace (QKS) 法が開発され、ノイズの多い中間スケール量子コンピュータ上で加速シミュレーションを行う能力が向上した。
マルチボディシステムの基底状態と励起状態を決定する新しい手法であるQDavidsonアルゴリズムから導出した2つのQKS手法を導入・評価する。
論文 参考訳(メタデータ) (2024-06-12T22:30:52Z) - Compact quantum algorithms for time-dependent differential equations [0.0]
我々は、ユニタリの線形結合に基づくアイデアに基づいて、非ユニタリで非エルミート量子系をシミュレートする。
我々は,反復行列ベクトル乗算と行列逆演算を効率的に行うハイブリッド量子古典アルゴリズムを生成する。
論文 参考訳(メタデータ) (2024-05-16T02:14:58Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
量子コンピューティングは、アルゴリズムを設計する新しい方法の基礎となる。
どの場の量子スピードアップが達成できるかという新たな課題が生じる。
量子サブルーチンの設計は、従来のサブルーチンよりも効率的で、新しい強力な量子アルゴリズムに固い柱を向ける。
論文 参考訳(メタデータ) (2024-02-26T09:32:07Z) - Two quantum algorithms for solving the one-dimensional
advection-diffusion equation [0.0]
2つの量子アルゴリズムが周期的境界条件を持つ線形一次元対流拡散方程式の数値解に対して提示される。
量子ビット数の増加に伴う精度と性能を、ポイントごとに比較する。
論文 参考訳(メタデータ) (2023-12-30T21:23:15Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
我々は、ニューラルネットワークの量子対する最も有望な候補として登場した変分量子回路(VQC)に注目した。
有望な結果を示す一方で、バレン高原、重みの周期性、アーキテクチャの選択など、さまざまな問題のために、VQCのトレーニングは困難である。
本稿では,VQCの重みとアーキテクチャの両方を最適化するために,自然進化にインスパイアされた勾配のないアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-14T08:03:20Z) - Quantum Imitation Learning [74.15588381240795]
本稿では、量子優位性を利用してILを高速化する量子模倣学習(QIL)を提案する。
量子行動クローニング(Q-BC)と量子生成逆模倣学習(Q-GAIL)という2つのQILアルゴリズムを開発した。
実験結果から,Q-BCとQ-GAILの両者が,従来のものと同等の性能を達成できることが判明した。
論文 参考訳(メタデータ) (2023-04-04T12:47:35Z) - Hybrid Quantum Classical Simulations [0.0]
量子コンピューティングの2つの主要なハイブリッド応用、すなわち量子近似最適化アルゴリズム(QAOA)と変分量子固有解法(VQE)について報告する。
どちらも、古典的な中央処理ユニットと量子処理ユニットの間の漸進的な通信を必要とするため、ハイブリッド量子古典アルゴリズムである。
論文 参考訳(メタデータ) (2022-10-06T10:49:15Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - Quantum Approximate Optimization Algorithm Based Maximum Likelihood
Detection [80.28858481461418]
量子技術の最近の進歩は、ノイズの多い中間スケール量子(NISQ)デバイスへの道を開く。
量子技術の最近の進歩は、ノイズの多い中間スケール量子(NISQ)デバイスへの道を開く。
論文 参考訳(メタデータ) (2021-07-11T10:56:24Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
量子コンピューティングの標準的なアプローチは、古典的にシミュレート可能なフォールトトレラントな演算セットを促進するという考え方に基づいている。
量子回路の古典的準確率シミュレーションをどのように促進するかを示す。
論文 参考訳(メタデータ) (2021-03-12T20:58:41Z) - NISQ Algorithm for Hamiltonian Simulation via Truncated Taylor Series [0.0]
ノイズの多い中間スケール量子(NISQ)アルゴリズムは、現在利用可能な量子ハードウェアを効果的に利用することを目的としている。
我々は既存のアルゴリズムの利点を共有し、いくつかの欠点を緩和する新しいアルゴリズムであるTorylor量子シミュレータ(TTQS)を提案する。
我々のアルゴリズムは古典的量子フィードバックループを持たず、建設によって不規則な高原問題をバイパスする。
論文 参考訳(メタデータ) (2021-03-09T15:48:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。