論文の概要: TART: Boosting Clean Accuracy Through Tangent Direction Guided Adversarial Training
- arxiv url: http://arxiv.org/abs/2408.14728v1
- Date: Tue, 27 Aug 2024 01:41:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-28 15:14:31.895882
- Title: TART: Boosting Clean Accuracy Through Tangent Direction Guided Adversarial Training
- Title(参考訳): TART:Tangent Direction Guided Adversarial Trainingによるクリーンな精度向上
- Authors: Bongsoo Yi, Rongjie Lai, Yao Li,
- Abstract要約: 敵の訓練は、敵の攻撃に対するディープニューラルネットワークの堅牢性を高めることに成功している。
しかし、この堅牢性はクリーンデータに対する精度の大幅な低下を伴う。
本稿では,TART(Tangent Direction Guided Adversarial Training)と呼ばれる新しい手法を提案する。
- 参考スコア(独自算出の注目度): 7.931280949498884
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Adversarial training has been shown to be successful in enhancing the robustness of deep neural networks against adversarial attacks. However, this robustness is accompanied by a significant decline in accuracy on clean data. In this paper, we propose a novel method, called Tangent Direction Guided Adversarial Training (TART), that leverages the tangent space of the data manifold to ameliorate the existing adversarial defense algorithms. We argue that training with adversarial examples having large normal components significantly alters the decision boundary and hurts accuracy. TART mitigates this issue by estimating the tangent direction of adversarial examples and allocating an adaptive perturbation limit according to the norm of their tangential component. To the best of our knowledge, our paper is the first work to consider the concept of tangent space and direction in the context of adversarial defense. We validate the effectiveness of TART through extensive experiments on both simulated and benchmark datasets. The results demonstrate that TART consistently boosts clean accuracy while retaining a high level of robustness against adversarial attacks. Our findings suggest that incorporating the geometric properties of data can lead to more effective and efficient adversarial training methods.
- Abstract(参考訳): 敵の訓練は、敵の攻撃に対するディープニューラルネットワークの堅牢性を高めることに成功している。
しかし、この堅牢性はクリーンデータに対する精度の大幅な低下を伴う。
本稿では,TART(Tangent Direction Guided Adversarial Training)と呼ばれる新しい手法を提案する。
正則成分が大きい逆例によるトレーニングは決定境界を著しく変化させ、精度を損なうと論じる。
TARTは、敵の例の接する方向を推定し、その接する成分のノルムに従って適応摂動制限を割り当てることでこの問題を緩和する。
我々の知る限り、我々の論文は敵防衛の文脈における接地空間と方向の概念を考える最初の研究である。
我々は、シミュレーションとベンチマークの両方のデータセットに対する広範な実験を通して、TARTの有効性を検証する。
その結果、TARTは敵攻撃に対する高い堅牢性を保ちながら、クリーンな精度を一貫して向上することが示された。
本研究は, データの幾何学的特性を取り入れることで, より効率的かつ効率的な対人訓練法がもたらされることを示唆している。
関連論文リスト
- Soften to Defend: Towards Adversarial Robustness via Self-Guided Label Refinement [5.865750284677784]
敵対的訓練(AT)は、敵対的攻撃に対するディープニューラルネットワークの堅牢性を得る最も効果的な方法の1つである。
AT法は頑健なオーバーフィッティング、すなわちトレーニング曲線とテスト曲線の間の大きな一般化ギャップに悩まされている。
本稿では,AT のラベルリファインメント手法を提案する。この手法は,高信頼のハードラベルから,より正確かつ情報的なラベル分布を自己定義する。
論文 参考訳(メタデータ) (2024-03-14T04:48:31Z) - DAD++: Improved Data-free Test Time Adversarial Defense [12.606555446261668]
本稿では,検出・修正フレームワークを含むDAD(Data-free Adversarial Defense)を提案する。
提案手法の有効性を示すため,いくつかのデータセットとネットワークアーキテクチャについて幅広い実験と改善を行った。
私たちのDAD++は、クリーンな精度を最小限に抑えながら、様々な敵攻撃に対して印象的なパフォーマンスを提供します。
論文 参考訳(メタデータ) (2023-09-10T20:39:53Z) - Practical Edge Detection via Robust Collaborative Learning [11.176517889212015]
エッジ検出は、幅広いビジョン指向タスクのコアコンポーネントである。
目標を達成するためには,2つの重要な問題に対処する必要がある。
非効率なトレーニング済みバックボーンからディープエッジモデルを緩和する方法。
トレーニングデータにおいて、ノイズや間違ったラベルからネガティブな影響を解放する方法。
論文 参考訳(メタデータ) (2023-08-27T12:12:27Z) - Doubly Robust Instance-Reweighted Adversarial Training [107.40683655362285]
本稿では,2重のインスタンス再重み付き対向フレームワークを提案する。
KL偏差正規化損失関数の最適化により重みを求める。
提案手法は, 平均ロバスト性能において, 最先端のベースライン法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-08-01T06:16:18Z) - Improving Adversarial Robustness to Sensitivity and Invariance Attacks
with Deep Metric Learning [80.21709045433096]
対向ロバスト性の標準的な方法は、サンプルを最小に摂動させることによって作られたサンプルに対して防御する枠組みを仮定する。
距離学習を用いて、最適輸送問題として逆正則化をフレーム化する。
予備的な結果から, 変分摂動の規則化は, 変分防御と敏感防御の両方を改善することが示唆された。
論文 参考訳(メタデータ) (2022-11-04T13:54:02Z) - Distributed Adversarial Training to Robustify Deep Neural Networks at
Scale [100.19539096465101]
現在のディープニューラルネットワーク(DNN)は、入力に対する敵の摂動が分類を変更したり操作したりする敵の攻撃に対して脆弱である。
このような攻撃を防御するために、敵の訓練(AT)として知られる効果的なアプローチが、堅牢な訓練を緩和するために示されている。
複数のマシンにまたがって実装された大規模バッチ対逆トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-13T15:39:43Z) - Evaluating Membership Inference Through Adversarial Robustness [6.983991370116041]
本稿では,敵の強靭性に基づくメンバシップ推論攻撃の強化手法を提案する。
提案手法をFashion-MNIST, CIFAR-10, CIFAR-100の3つのデータセットで評価した。
論文 参考訳(メタデータ) (2022-05-14T06:48:47Z) - Modelling Adversarial Noise for Adversarial Defense [96.56200586800219]
敵の防御は、通常、敵の音を除去したり、敵の頑強な目標モデルを訓練するために、敵の例を活用することに焦点を当てる。
逆データと自然データの関係は、逆データからクリーンデータを推測し、最終的な正しい予測を得るのに役立ちます。
本研究では, ラベル空間の遷移関係を学習するために, 逆方向の雑音をモデル化し, 逆方向の精度を向上させることを目的とした。
論文 参考訳(メタデータ) (2021-09-21T01:13:26Z) - Geometry-aware Instance-reweighted Adversarial Training [78.70024866515756]
敵対的機械学習では、堅牢性と正確性がお互いを傷つけるという共通の信念があった。
本稿では,自然データ点の攻撃がいかに難しいかに基づいて,幾何対応のインスタンス再重み付き対向訓練を提案する。
実験の結果,本提案は標準的な対人訓練の堅牢性を高めることが示唆された。
論文 参考訳(メタデータ) (2020-10-05T01:33:11Z) - Adversarial Self-Supervised Contrastive Learning [62.17538130778111]
既存の対数学習アプローチは、主にクラスラベルを使用して、誤った予測につながる対数サンプルを生成する。
本稿では,未ラベルデータに対する新たな逆攻撃を提案する。これにより,モデルが摂動データサンプルのインスタンスレベルのアイデンティティを混乱させる。
ラベル付きデータなしで頑健なニューラルネットワークを逆さまにトレーニングするための,自己教師付きコントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-13T08:24:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。