論文の概要: PPVF: An Efficient Privacy-Preserving Online Video Fetching Framework with Correlated Differential Privacy
- arxiv url: http://arxiv.org/abs/2408.14735v1
- Date: Tue, 27 Aug 2024 02:03:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-28 15:14:31.885583
- Title: PPVF: An Efficient Privacy-Preserving Online Video Fetching Framework with Correlated Differential Privacy
- Title(参考訳): PPVF: 関連性のある差分プライバシーを備えた効率的なプライバシー保護オンラインビデオフェッチフレームワーク
- Authors: Xianzhi Zhang, Yipeng Zhou, Di Wu, Quan Z. Sheng, Miao Hu, Linchang Xiao,
- Abstract要約: 高品質なオンラインビデオサービスを維持しつつ、ユーザの要求のプライバシを維持するための新しいプライバシ保存ビデオフェッチフレームワークを提案する。
信頼されたエッジデバイスを使用して、ビデオのプレフェッチとキャッシュを行い、エッジキャッシュの効率を最適化しながら、ユーザの要求のプライバシを確保する。
その結果,PPVFは高いビデオキャッシング性能を維持しつつ,ユーザの要求するプライバシを効果的に保護することを示した。
- 参考スコア(独自算出の注目度): 24.407782529925615
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Online video streaming has evolved into an integral component of the contemporary Internet landscape. Yet, the disclosure of user requests presents formidable privacy challenges. As users stream their preferred online videos, their requests are automatically seized by video content providers, potentially leaking users' privacy. Unfortunately, current protection methods are not well-suited to preserving user request privacy from content providers while maintaining high-quality online video services. To tackle this challenge, we introduce a novel Privacy-Preserving Video Fetching (PPVF) framework, which utilizes trusted edge devices to pre-fetch and cache videos, ensuring the privacy of users' requests while optimizing the efficiency of edge caching. More specifically, we design PPVF with three core components: (1) \textit{Online privacy budget scheduler}, which employs a theoretically guaranteed online algorithm to select non-requested videos as candidates with assigned privacy budgets. Alternative videos are chosen by an online algorithm that is theoretically guaranteed to consider both video utilities and available privacy budgets. (2) \textit{Noisy video request generator}, which generates redundant video requests (in addition to original ones) utilizing correlated differential privacy to obfuscate request privacy. (3) \textit{Online video utility predictor}, which leverages federated learning to collaboratively evaluate video utility in an online fashion, aiding in video selection in (1) and noise generation in (2). Finally, we conduct extensive experiments using real-world video request traces from Tencent Video. The results demonstrate that PPVF effectively safeguards user request privacy while upholding high video caching performance.
- Abstract(参考訳): オンラインビデオストリーミングは、現代インターネットのランドスケープに不可欠なコンポーネントへと進化してきた。
しかし、ユーザー要求の開示は、重大なプライバシー上の課題を浮き彫りにする。
ユーザが好みのオンラインビデオをストリームすると、そのリクエストはビデオコンテンツプロバイダによって自動的に押収され、ユーザのプライバシーが漏洩する可能性がある。
残念ながら、現在の保護方法は、高品質なオンラインビデオサービスを維持しながら、コンテンツプロバイダからのユーザー要求のプライバシを保存するのに適していない。
この課題に対処するために、信頼されたエッジデバイスを使用してビデオのプレフェッチとキャッシュを行い、エッジキャッシュの効率を最適化しながら、ユーザの要求のプライバシを確保する、新たなプライバシ保存ビデオフェッチ(PPVF)フレームワークを導入する。
より具体的には、(1) \textit{Online privacy budget scheduler} は、理論的に保証されたオンラインアルゴリズムを用いて、プライバシ予算を割り当てた候補として、要求されないビデオを選択する。
代替ビデオは、理論上ビデオユーティリティと利用可能なプライバシー予算の両方を考慮することが保証されるオンラインアルゴリズムによって選択される。
2) <textit{Noisy video request generator} は、相互差分プライバシーを利用して(元のものに加えて)冗長なビデオリクエストを生成し、リクエストのプライバシーを難なくする。
(3)フェデレーション学習を活用して,(1)のビデオ選択支援,(2)ノイズ生成を支援するオンライン手法による映像ユーティリティの協調評価を行う。
最後に、Tencent Videoの現実世界のビデオリクエストトレースを用いて、広範な実験を行う。
その結果,PPVFは高いビデオキャッシング性能を維持しつつ,ユーザの要求するプライバシを効果的に保護することを示した。
関連論文リスト
- PV-VTT: A Privacy-Centric Dataset for Mission-Specific Anomaly Detection and Natural Language Interpretation [5.0923114224599555]
プライバシー侵害の特定を目的とした,ユニークなマルチモーダルデータセットであるPV-VTT(Privacy Violation Video To Text)を提案する。
PV-VTTは、シナリオ内のビデオとテキストの両方に詳細なアノテーションを提供する。
このプライバシー重視のアプローチにより、研究者はこのデータセットを、保護された機密性を保護しながら使用することができる。
論文 参考訳(メタデータ) (2024-10-30T01:02:20Z) - Collaborative Inference over Wireless Channels with Feature Differential Privacy [57.68286389879283]
複数の無線エッジデバイス間の協調推論は、人工知能(AI)アプリケーションを大幅に強化する可能性がある。
抽出された特徴を抽出することは、プロセス中に機密性の高い個人情報が暴露されるため、重大なプライバシーリスクをもたらす。
本稿では,ネットワーク内の各エッジデバイスが抽出された機能のプライバシを保護し,それらを中央サーバに送信して推論を行う,新たなプライバシ保存協調推論機構を提案する。
論文 参考訳(メタデータ) (2024-10-25T18:11:02Z) - Sync from the Sea: Retrieving Alignable Videos from Large-Scale Datasets [62.280729345770936]
AVR(Alignable Video Retrieval)の課題について紹介する。
クェリビデオが与えられた場合、我々は大量のクリップから良質な映像を識別し、時間的にクェリに同期させることができる。
大規模なKineetics700を含む3つのデータセットに関する実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2024-09-02T20:00:49Z) - A Randomized Approach for Tight Privacy Accounting [63.67296945525791]
推定検証リリース(EVR)と呼ばれる新しい差分プライバシーパラダイムを提案する。
EVRパラダイムは、まずメカニズムのプライバシパラメータを推定し、その保証を満たすかどうかを確認し、最後にクエリ出力を解放する。
我々の実証的な評価は、新たに提案されたEVRパラダイムが、プライバシ保護機械学習のユーティリティプライバシトレードオフを改善することを示している。
論文 参考訳(メタデータ) (2023-04-17T00:38:01Z) - STPrivacy: Spatio-Temporal Tubelet Sparsification and Anonymization for
Privacy-preserving Action Recognition [28.002605566359676]
両時間的視点からプライバシー保護を行うPPARパラダイムを提案し,STPrivacyフレームワークを提案する。
当社のSTPrivacyは初めて視覚変換器をPPARに適用し,映像を漏洩時管のシーケンスと見なしている。
大規模なベンチマークがないため、最も人気のある2つのアクション認識データセットの5つのプライバシ属性を注釈付けします。
論文 参考訳(メタデータ) (2023-01-08T14:07:54Z) - PrivHAR: Recognizing Human Actions From Privacy-preserving Lens [58.23806385216332]
我々は、人間の行動認識パイプラインに沿って、堅牢な視覚的プライバシー保護を提供するための最適化フレームワークを提案する。
我々のフレームワークは、カメラレンズをパラメータ化して、ビデオの品質を劣化させ、プライバシー特性を抑え、敵の攻撃を防ぎます。
論文 参考訳(メタデータ) (2022-06-08T13:43:29Z) - SPAct: Self-supervised Privacy Preservation for Action Recognition [73.79886509500409]
アクション認識におけるプライバシー漏洩を緩和するための既存のアプローチは、ビデオデータセットのアクションラベルとともに、プライバシラベルを必要とする。
自己教師付き学習(SSL)の最近の進歩は、未ラベルデータの未発見の可能性を解き放ちつつある。
本稿では、プライバシーラベルを必要とせず、自己管理的な方法で、入力ビデオからプライバシー情報を除去する新しいトレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-03-29T02:56:40Z) - VPN: Video Provenance Network for Robust Content Attribution [72.12494245048504]
VPN - オンラインで共有されているビデオから出典情報を復元するコンテンツ属性手法を提案する。
完全長あるいは切り離されたビデオクエリを用いて,このようなビデオのマッチングに頑健な検索埋め込みを学習する。
一度ビデオクリップの信頼できるデータベースにマッチすると、そのクリップの出所に関する関連情報がユーザに提示される。
論文 参考訳(メタデータ) (2021-09-21T09:07:05Z) - Robust Privacy-Preserving Motion Detection and Object Tracking in
Encrypted Streaming Video [39.453548972987015]
本稿では,暗号化された監視ビデオのビットストリームに対して,効率的かつ堅牢なプライバシー保護動作検出と複数物体追跡手法を提案する。
提案手法は, 暗号化・圧縮された領域における既存の作業と比較して, 最高の検出・追跡性能を実現する。
我々の手法は、カメラの動き/ジッタ、動的背景、影など、様々な課題を伴う複雑な監視シナリオで効果的に利用することができる。
論文 参考訳(メタデータ) (2021-08-30T11:58:19Z) - Privid: Practical, Privacy-Preserving Video Analytics Queries [6.7897713298300335]
本稿では,ビデオ分析における差分プライバシー(DP)の新たな概念として,$(rho,K,epsilon)$-event-duration Privacyを提案する。
プライビッドは,非私的システムの79~99%以内のアキュラシーを達成している。
論文 参考訳(メタデータ) (2021-06-22T22:25:08Z) - Privacy-Preserving Video Classification with Convolutional Neural
Networks [8.51142156817993]
本稿では,畳み込みニューラルネットワークを用いた単一フレーム方式のビデオ分類のプライバシ保護実装を提案する。
個人の感情認識への応用として提案手法の評価を行った。
論文 参考訳(メタデータ) (2021-02-06T05:05:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。