論文の概要: LyCon: Lyrics Reconstruction from the Bag-of-Words Using Large Language Models
- arxiv url: http://arxiv.org/abs/2408.14750v1
- Date: Tue, 27 Aug 2024 03:01:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-28 15:14:31.866072
- Title: LyCon: Lyrics Reconstruction from the Bag-of-Words Using Large Language Models
- Title(参考訳): LyCon:大規模言語モデルを用いた単語の単語から歌詞を再構成する
- Authors: Haven Kim, Kahyun Choi,
- Abstract要約: 本研究では,公開されているBag-of-Wordsデータセットから著作権のない歌詞を生成する新しい手法を提案する。
我々は、有名なソースからのメタデータと一致した、再構成された歌詞のデータセットLyConをコンパイルし、利用可能にしました。
我々は、ムードアノテーションやジャンルなどのメタデータの統合は、歌詞に関する様々な学術実験を可能にすると信じている。
- 参考スコア(独自算出の注目度): 1.1510009152620668
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper addresses the unique challenge of conducting research in lyric studies, where direct use of lyrics is often restricted due to copyright concerns. Unlike typical data, internet-sourced lyrics are frequently protected under copyright law, necessitating alternative approaches. Our study introduces a novel method for generating copyright-free lyrics from publicly available Bag-of-Words (BoW) datasets, which contain the vocabulary of lyrics but not the lyrics themselves. Utilizing metadata associated with BoW datasets and large language models, we successfully reconstructed lyrics. We have compiled and made available a dataset of reconstructed lyrics, LyCon, aligned with metadata from renowned sources including the Million Song Dataset, Deezer Mood Detection Dataset, and AllMusic Genre Dataset, available for public access. We believe that the integration of metadata such as mood annotations or genres enables a variety of academic experiments on lyrics, such as conditional lyric generation.
- Abstract(参考訳): 本稿では,歌詞の直接使用が著作権上の懸念から制限されることの多い,歌詞研究の独特な課題について論じる。
典型的なデータとは異なり、インターネットソースの歌詞は著作権法の下でしばしば保護され、代替のアプローチを必要とする。
本研究では,Bag-of-Words(BoW)データセットから著作権のない歌詞を生成する新しい手法を提案する。
BoWデータセットと大規模言語モデルに関連付けられたメタデータを利用することで,歌詞の再構築に成功した。
我々は、Milline Song Dataset、Deezer Mood Detection Dataset、AllMusic Genre Datasetなどの有名なソースからのメタデータと合わせて、再構成された歌詞のデータセットLyConをコンパイルし、公開しました。
我々は、ムードアノテーションやジャンルなどのメタデータの統合は、条件付き歌詞生成のような歌詞に関する様々な学術実験を可能にすると信じている。
関連論文リスト
- Enriching Music Descriptions with a Finetuned-LLM and Metadata for Text-to-Music Retrieval [7.7464988473650935]
Text-to-Music Retrievalは、広範な音楽データベース内のコンテンツ発見において重要な役割を担っている。
本稿では,TTMR++と呼ばれる改良されたテキスト・音楽検索モデルを提案する。
論文 参考訳(メタデータ) (2024-10-04T09:33:34Z) - SongCreator: Lyrics-based Universal Song Generation [53.248473603201916]
SongCreatorは、声楽と伴奏の両方で曲を生成するという課題に取り組むために設計された曲生成システムである。
モデルには2つの新しいデザインがある: ボーカルの情報と伴奏を収録するための巧妙に設計された二重系列言語モデル (M) と、DSLMのための一連の注意マスク戦略である。
実験では,8つのタスクすべてに対して,最先端ないし競争的なパフォーマンスを実現することにより,SongCreatorの有効性を示す。
論文 参考訳(メタデータ) (2024-09-09T19:37:07Z) - REFFLY: Melody-Constrained Lyrics Editing Model [50.03960548399128]
任意の形態のプレーンテキストドラフトを高品質で本格的な歌詞に編集するための,最初の改訂フレームワークであるREFFLYを紹介する。
提案手法は,生成した歌詞が原文の意味を保ち,旋律と整合し,所望の曲構造に固執することを保証する。
論文 参考訳(メタデータ) (2024-08-30T23:22:34Z) - Detecting Synthetic Lyrics with Few-Shot Inference [5.448536338411993]
高品質な合成歌詞の最初のデータセットをキュレートした。
LLM2Vecをベースとした、最も優れた数発の検出器は、スタイリスティックおよび統計的手法を超越しています。
本研究は,創造的コンテンツ検出のさらなる研究の必要性を強調する。
論文 参考訳(メタデータ) (2024-06-21T15:19:21Z) - Sudowoodo: a Chinese Lyric Imitation System with Source Lyrics [10.99860269567001]
原文の歌詞に基づいて新しい歌詞を生成することができる中国語の歌詞模倣システムであるtextbftextitSudowoodoを紹介した。
推論過程において,生成した歌詞をフィルタ・ランク付けし,高品質な歌詞を選択するために,後処理モジュールを利用する。
人間の評価結果は,我々のフレームワークがより優れた歌詞の模倣を行うことができることを示している。
論文 参考訳(メタデータ) (2023-08-09T02:12:04Z) - LyricWhiz: Robust Multilingual Zero-shot Lyrics Transcription by Whispering to ChatGPT [48.28624219567131]
リリックウィズ(LyricWhiz)は、頑健で、多言語で、ゼロショットの自動歌詞書き起こし方式である。
我々は、弱教師付き頑健な音声認識モデルであるWhisperと、今日の最もパフォーマンスの高いチャットベースの大規模言語モデルであるGPT-4を使用している。
実験の結果,LyricWhizは英語の既存手法に比べて単語誤り率を大幅に低下させることがわかった。
論文 参考訳(メタデータ) (2023-06-29T17:01:51Z) - Unsupervised Melody-to-Lyric Generation [91.29447272400826]
本稿では,メロディ・歌詞データを学習することなく高品質な歌詞を生成する手法を提案する。
我々は、メロディと歌詞のセグメンテーションとリズムアライメントを利用して、与えられたメロディをデコード制約にコンパイルする。
我々のモデルは、強いベースラインよりもオントピー的、歌いやすく、知性があり、一貫性のある高品質な歌詞を生成することができる。
論文 参考訳(メタデータ) (2023-05-30T17:20:25Z) - Unsupervised Melody-Guided Lyrics Generation [84.22469652275714]
メロディと歌詞の一致したデータを学習することなく、楽しく聴ける歌詞を生成することを提案する。
メロディと歌詞間の重要なアライメントを活用し、与えられたメロディを制約にコンパイルし、生成プロセスを導く。
論文 参考訳(メタデータ) (2023-05-12T20:57:20Z) - Re-creation of Creations: A New Paradigm for Lyric-to-Melody Generation [158.54649047794794]
Re-creation of Creations (ROC)は、歌詞からメロディ生成のための新しいパラダイムである。
ROCは、Lyric-to-Meody生成において、優れたLyric-Meody特徴アライメントを実現する。
論文 参考訳(メタデータ) (2022-08-11T08:44:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。