Training-Free Time-Series Anomaly Detection: Leveraging Image Foundation Models
- URL: http://arxiv.org/abs/2408.14756v1
- Date: Tue, 27 Aug 2024 03:12:08 GMT
- Title: Training-Free Time-Series Anomaly Detection: Leveraging Image Foundation Models
- Authors: Nobuo Namura, Yuma Ichikawa,
- Abstract summary: We propose an image-based, training-free time-series anomaly detection (ITF-TAD) approach.
ITF-TAD converts time-series data into images using wavelet transform and compresses them into a single representation, leveraging image foundation models for anomaly detection.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in time-series anomaly detection have relied on deep learning models to handle the diverse behaviors of time-series data. However, these models often suffer from unstable training and require extensive hyperparameter tuning, leading to practical limitations. Although foundation models present a potential solution, their use in time series is limited. To overcome these issues, we propose an innovative image-based, training-free time-series anomaly detection (ITF-TAD) approach. ITF-TAD converts time-series data into images using wavelet transform and compresses them into a single representation, leveraging image foundation models for anomaly detection. This approach achieves high-performance anomaly detection without unstable neural network training or hyperparameter tuning. Furthermore, ITF-TAD identifies anomalies across different frequencies, providing users with a detailed visualization of anomalies and their corresponding frequencies. Comprehensive experiments on five benchmark datasets, including univariate and multivariate time series, demonstrate that ITF-TAD offers a practical and effective solution with performance exceeding or comparable to that of deep models.
Related papers
- Trajectory Flow Matching with Applications to Clinical Time Series Modeling [77.58277281319253]
Trajectory Flow Matching (TFM) trains a Neural SDE in a simulation-free manner, bypassing backpropagation through the dynamics.
We demonstrate improved performance on three clinical time series datasets in terms of absolute performance and uncertainty prediction.
arXiv Detail & Related papers (2024-10-28T15:54:50Z) - Few-shot Online Anomaly Detection and Segmentation [29.693357653538474]
This paper focuses on addressing the challenging yet practical few-shot online anomaly detection and segmentation (FOADS) task.
Under the FOADS framework, models are trained on a few-shot normal dataset, followed by inspection and improvement of their capabilities by leveraging unlabeled streaming data containing both normal and abnormal samples simultaneously.
In order to achieve improved performance with limited training samples, we employ multi-scale feature embedding extracted from a CNN pre-trained on ImageNet to obtain a robust representation.
arXiv Detail & Related papers (2024-03-27T02:24:00Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - CARLA: Self-supervised Contrastive Representation Learning for Time Series Anomaly Detection [53.83593870825628]
One main challenge in time series anomaly detection (TSAD) is the lack of labelled data in many real-life scenarios.
Most of the existing anomaly detection methods focus on learning the normal behaviour of unlabelled time series in an unsupervised manner.
We introduce a novel end-to-end self-supervised ContrAstive Representation Learning approach for time series anomaly detection.
arXiv Detail & Related papers (2023-08-18T04:45:56Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z) - Robust Audio Anomaly Detection [10.75127981612396]
The presented approach doesn't assume the presence of labeled anomalies in the training dataset.
The temporal dynamics are modeled using recurrent layers augmented with attention mechanism.
The output of the network is an outlier robust probability density function.
arXiv Detail & Related papers (2022-02-03T17:19:42Z) - Time-Series Anomaly Detection with Implicit Neural Representation [0.38073142980733]
Implicit Neural Representation-based Anomaly Detection (INRAD) is proposed.
We train a simple multi-layer perceptron that takes time as input and outputs corresponding values at that time.
Then we utilize the representation error as an anomaly score for detecting anomalies.
arXiv Detail & Related papers (2022-01-28T06:17:24Z) - An Attention-based ConvLSTM Autoencoder with Dynamic Thresholding for
Unsupervised Anomaly Detection in Multivariate Time Series [2.9685635948299995]
We propose an unsupervised Attention-based Convolutional Long Short-Term Memory (ConvLSTM) Autoencoder with Dynamic Thresholding (ACLAE-DT) framework for anomaly detection and diagnosis.
The framework starts by pre-processing and enriching the data, before constructing feature images to characterize the system statuses.
The constructed feature images are fed into an attention-based ConvLSTM autoencoder, which aims to encode the constructed feature images and capture the temporal behavior.
The reconstruction errors are then computed and subjected to a statistical-based, dynamic thresholding mechanism to detect and diagnose the anomalies
arXiv Detail & Related papers (2022-01-23T04:01:43Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - NVAE-GAN Based Approach for Unsupervised Time Series Anomaly Detection [19.726089445453734]
Time series anomaly detection is a common but challenging task in many industries.
It is difficult to detect anomalies in time series with high accuracy, due to noisy data collected from real world.
We propose our anomaly detection model: Time series to Image VAE (T2IVAE)
arXiv Detail & Related papers (2021-01-08T08:35:15Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.