論文の概要: Explainable Hierarchical Urban Representation Learning for Commuting Flow Prediction
- arxiv url: http://arxiv.org/abs/2408.14762v2
- Date: Thu, 5 Sep 2024 08:30:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-07 01:34:07.020525
- Title: Explainable Hierarchical Urban Representation Learning for Commuting Flow Prediction
- Title(参考訳): 通勤予測のための説明可能な階層型都市表現学習
- Authors: Mingfei Cai, Yanbo Pang, Yoshihide Sekimoto,
- Abstract要約: 通勤フロー予測は、現実の自治体の業務に欠かせない課題である。
我々は,異なるタイプのODフローを予測するために,意味のある領域埋め込みを生成するヘテロジニアスグラフベースモデルを開発した。
提案モデルでは,一様都市構造の観点から既存モデルよりも優れた性能を示す。
- 参考スコア(独自算出の注目度): 1.5156879440024378
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Commuting flow prediction is an essential task for municipal operations in the real world. Previous studies have revealed that it is feasible to estimate the commuting origin-destination (OD) demand within a city using multiple auxiliary data. However, most existing methods are not suitable to deal with a similar task at a large scale, namely within a prefecture or the whole nation, owing to the increased number of geographical units that need to be maintained. In addition, region representation learning is a universal approach for gaining urban knowledge for diverse metropolitan downstream tasks. Although many researchers have developed comprehensive frameworks to describe urban units from multi-source data, they have not clarified the relationship between the selected geographical elements. Furthermore, metropolitan areas naturally preserve ranked structures, like cities and their inclusive districts, which makes elucidating relations between cross-level urban units necessary. Therefore, we develop a heterogeneous graph-based model to generate meaningful region embeddings at multiple spatial resolutions for predicting different types of inter-level OD flows. To demonstrate the effectiveness of the proposed method, extensive experiments were conducted using real-world aggregated mobile phone datasets collected from Shizuoka Prefecture, Japan. The results indicate that our proposed model outperforms existing models in terms of a uniform urban structure. We extend the understanding of predicted results using reasonable explanations to enhance the credibility of the model.
- Abstract(参考訳): 通勤フロー予測は、現実の自治体の業務に欠かせない課題である。
従来の研究では、複数の補助データを用いて都市内における通勤起因決定(OD)需要を推定することは可能であることが明らかになっている。
しかし、既存の方法の多くは、維持すべき地理的単位の増加により、都道府県や全国で同様の業務を大規模にこなすには適していない。
さらに、地域表現学習は、多様な都市下流課題に対する都市知識獲得のための普遍的なアプローチである。
多くの研究者がマルチソースデータから都市単位を記述するための包括的枠組みを開発してきたが、選択した地理的要素の関係は明らかになっていない。
さらに、都心部は、都市やその包括地区などの格付け構造を自然に保存しており、都市単位間の関係を解明する必要がある。
そこで我々は,複数の空間解像度で有意な領域埋め込みを生成できる不均一なグラフベースモデルを構築し,異なるタイプのODフローを予測する。
提案手法の有効性を実証するために,静岡県から収集した実世界の携帯電話データを用いた広範な実験を行った。
その結果,提案モデルが一様都市構造の観点から既存モデルより優れていたことが示唆された。
モデルの信頼性を高めるために、合理的な説明を用いて予測結果の理解を拡大する。
関連論文リスト
- Urban Region Pre-training and Prompting: A Graph-based Approach [10.375941950028938]
我々は、地域表現学習のためのtextbfG$raph-based $textbfU$rban $textbfR$egion $textbfP$re-training と $textbfP$rompting フレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-12T05:00:23Z) - Fine-Grained Urban Flow Inference with Multi-scale Representation Learning [14.673004628911443]
そこで本稿では,UrbanMSRと呼ばれる都市流モデルを提案する。
自己教師付きコントラスト学習を用いて、近隣レベルと都市レベルの地理的情報の動的マルチスケール表現を得る。
実世界の3つのデータセットに対する広範な実験により,その性能を検証した。
論文 参考訳(メタデータ) (2024-06-14T04:42:29Z) - Cross-City Matters: A Multimodal Remote Sensing Benchmark Dataset for
Cross-City Semantic Segmentation using High-Resolution Domain Adaptation
Networks [82.82866901799565]
我々は,都市間セマンティックセマンティックセグメンテーションタスクの研究を目的とした,新しいマルチモーダルリモートセンシングベンチマークデータセット(ハイパースペクトル,マルチスペクトル,SARを含む)を構築した。
単一都市に留まらず,多都市環境からAIモデルの一般化能力を促進するため,高解像度なドメイン適応ネットワークであるHighDANを提案する。
高DANは, 並列高分解能融合方式で, 都市景観の空間的トポロジカルな構造を良好に維持することができる。
論文 参考訳(メタデータ) (2023-09-26T23:55:39Z) - Unified Data Management and Comprehensive Performance Evaluation for
Urban Spatial-Temporal Prediction [Experiment, Analysis & Benchmark] [78.05103666987655]
この研究は、多様な都市空間時間データセットにアクセスし活用する際の課題に対処する。
都市空間・時空間のビッグデータ用に設計された統合ストレージフォーマットであるアトミックファイルを導入し,40種類の多様なデータセットでその有効性を検証する。
多様なモデルとデータセットを使用して広範な実験を行い、パフォーマンスリーダーボードを確立し、有望な研究方向性を特定する。
論文 参考訳(メタデータ) (2023-08-24T16:20:00Z) - Attentive Graph Enhanced Region Representation Learning [7.4106801792345705]
都市部を正確にかつ包括的に表現することは,様々な都市計画・分析業務に不可欠である。
本研究では,複数のグラフから包括的依存関係を抽出し,都市域のリッチな意味表現を学習することを目的としたAttentive Graph Enhanced Region Representation Learning (ATGRL)モデルを提案する。
論文 参考訳(メタデータ) (2023-07-06T16:38:43Z) - A General Purpose Neural Architecture for Geospatial Systems [142.43454584836812]
本稿では,空間的帰納バイアスを持つ汎用ニューラルアーキテクチャ(GPNA)の構築に向けたロードマップを示す。
このようなモデルがコミュニティのメンバー間の協力をいかに促進するかを考察する。
論文 参考訳(メタデータ) (2022-11-04T09:58:57Z) - Continuous-Time and Multi-Level Graph Representation Learning for
Origin-Destination Demand Prediction [52.0977259978343]
本稿では,原位置需要予測(CMOD)のための連続時間および多段階動的グラフ表現学習法を提案する。
状態ベクトルは、過去のトランザクション情報を保持し、最近発生したトランザクションに従って継続的に更新される。
北京地下鉄とニューヨークタクシーの2つの実世界のデータセットを用いて実験を行い、そのモデルが最先端のアプローチに対して優れていることを実証した。
論文 参考訳(メタデータ) (2022-06-30T03:37:50Z) - Spatio-Temporal Graph Few-Shot Learning with Cross-City Knowledge
Transfer [58.6106391721944]
クロスシティの知識は、データ不足の都市から学んだモデルを活用して、データ不足の都市の学習プロセスに役立てるという、その将来性を示している。
本稿では,ST-GFSLと呼ばれるS時間グラフのためのモデルに依存しない数ショット学習フレームワークを提案する。
本研究では,4つの交通速度予測ベンチマークの総合的な実験を行い,ST-GFSLの有効性を最先端手法と比較した。
論文 参考訳(メタデータ) (2022-05-27T12:46:52Z) - Neural Embeddings of Urban Big Data Reveal Emergent Structures in Cities [7.148078723492643]
都市部の異質性を利用したニューラルネットワーク(GNN)を提案する。
アメリカ合衆国の16大都市圏において,何百万もの携帯電話利用者による大規模高解像度モビリティデータセットを用いて,都市部コンポーネント間の複雑な関係をエンコードしていることを示す。
異なる郡で訓練されたモデルによって生成された埋め込みは、他の郡における創発的空間構造の50%から60%を捉えることができることを示す。
論文 参考訳(メタデータ) (2021-10-24T07:13:14Z) - Methodological Foundation of a Numerical Taxonomy of Urban Form [62.997667081978825]
本稿では, 生物系統学から得られた都市形態の数値分類法を提案する。
我々は同質の都市組織タイプを導出し、それら間の全体形態的類似性を決定することにより、都市形態の階層的分類を生成する。
フレーミングとプレゼンを行った後、プラハとアムステルダムの2都市でテストを行った。
論文 参考訳(メタデータ) (2021-04-30T12:47:52Z) - Learning Geo-Contextual Embeddings for Commuting Flow Prediction [20.600183945696863]
インフラ・土地利用情報に基づく通勤フローの予測は都市計画・公共政策開発に不可欠である。
重力モデルのような従来のモデルは、主に物理原理から派生し、現実のシナリオにおける予測力によって制限される。
本研究では,空間的相関を空間的コンテキスト情報から捉えて,通勤フロー予測を行うモデルであるGeo-contextual Multitask Embedding Learner (GMEL)を提案する。
論文 参考訳(メタデータ) (2020-05-04T17:45:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。