論文の概要: Revisiting Surgical Instrument Segmentation Without Human Intervention: A Graph Partitioning View
- arxiv url: http://arxiv.org/abs/2408.14789v3
- Date: Thu, 7 Nov 2024 02:43:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 11:49:24.856685
- Title: Revisiting Surgical Instrument Segmentation Without Human Intervention: A Graph Partitioning View
- Title(参考訳): 人的介入を伴わない手術器具分割の再検討:グラフ分割
- Authors: Mingyu Sheng, Jianan Fan, Dongnan Liu, Ron Kikinis, Weidong Cai,
- Abstract要約: 本稿では,ビデオフレーム分割をグラフ分割問題として再検討し,教師なしの手法を提案する。
自己教師付き事前学習モデルは、まず、高レベルな意味的特徴をキャプチャする特徴抽出器として活用される。
ディープ」固有ベクトルでは、手術用ビデオフレームは、ツールや組織などの異なるモジュールに意味的に分割され、区別可能な意味情報を提供する。
- 参考スコア(独自算出の注目度): 7.594796294925481
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Surgical instrument segmentation (SIS) on endoscopic images stands as a long-standing and essential task in the context of computer-assisted interventions for boosting minimally invasive surgery. Given the recent surge of deep learning methodologies and their data-hungry nature, training a neural predictive model based on massive expert-curated annotations has been dominating and served as an off-the-shelf approach in the field, which could, however, impose prohibitive burden to clinicians for preparing fine-grained pixel-wise labels corresponding to the collected surgical video frames. In this work, we propose an unsupervised method by reframing the video frame segmentation as a graph partitioning problem and regarding image pixels as graph nodes, which is significantly different from the previous efforts. A self-supervised pre-trained model is firstly leveraged as a feature extractor to capture high-level semantic features. Then, Laplacian matrixs are computed from the features and are eigendecomposed for graph partitioning. On the "deep" eigenvectors, a surgical video frame is meaningfully segmented into different modules such as tools and tissues, providing distinguishable semantic information like locations, classes, and relations. The segmentation problem can then be naturally tackled by applying clustering or threshold on the eigenvectors. Extensive experiments are conducted on various datasets (e.g., EndoVis2017, EndoVis2018, UCL, etc.) for different clinical endpoints. Across all the challenging scenarios, our method demonstrates outstanding performance and robustness higher than unsupervised state-of-the-art (SOTA) methods. The code is released at https://github.com/MingyuShengSMY/GraphClusteringSIS.git.
- Abstract(参考訳): 内視鏡画像における手術器具のセグメンテーション(SIS)は,低侵襲手術を増強するためのコンピュータ支援的介入の文脈において,長年の重要課題である。
近年の深層学習の方法論とデータ・ハングリーの性質の高まりを踏まえ、大規模な専門家による注釈に基づく神経予測モデルを訓練することは、この分野における既成のアプローチとして支配され、しかしながら、収集された外科的ビデオフレームに対応する微細なピクセル単位のラベルを作成するために、臨床医に禁止的な負担を課す可能性がある。
本研究では,ビデオフレーム分割をグラフ分割問題として再検討し,画像画素をグラフノードとして扱う教師なし手法を提案する。
自己教師付き事前学習モデルは、まず、高レベルな意味的特徴をキャプチャする特徴抽出器として活用される。
すると、ラプラシア行列は特徴量から計算され、グラフ分割のために固有分解される。
ディープ」固有ベクトルでは、手術用ビデオフレームは、ツールや組織などの異なるモジュールに意味的に分割され、位置、クラス、関係などの区別可能な意味情報を提供する。
セグメンテーション問題は、固有ベクトルにクラスタリングやしきい値を適用することで自然に取り組むことができる。
様々な臨床エンドポイント(例:EndoVis2017、EndoVis2018、UCLなど)で広範囲にわたる実験が実施されている。
難解なシナリオのすべてにおいて,本手法は,教師なしの最先端(SOTA)手法よりも優れた性能と堅牢性を示す。
コードはhttps://github.com/MingyuShengSMY/GraphClusteringSIS.gitで公開されている。
関連論文リスト
- UnSegMedGAT: Unsupervised Medical Image Segmentation using Graph Attention Networks Clustering [10.862430265350804]
事前学習したDino-ViTを用いた教師なしセグメンテーションフレームワークを提案する。
医用画像のセグメンテーションにおける顕著な性能向上を実現するために,画像内のグラフ構造を利用する。
提案手法は,MedSAM などの既存の(セミ)手法をはるかに上回ったり,マッチさせたりすることで,最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-11-04T10:42:21Z) - UnSeGArmaNet: Unsupervised Image Segmentation using Graph Neural Networks with Convolutional ARMA Filters [10.940349832919699]
事前学習したViTを用いた教師なしセグメンテーションフレームワークを提案する。
画像内に固有のグラフ構造を利用することにより,セグメント化における顕著な性能を実現する。
提案手法は,ベンチマーク画像セグメンテーションデータセット上での最先端性能(教師付き手法に匹敵する)を提供する。
論文 参考訳(メタデータ) (2024-10-08T15:10:09Z) - DiffCut: Catalyzing Zero-Shot Semantic Segmentation with Diffusion Features and Recursive Normalized Cut [62.63481844384229]
ファンデーションモデルは、言語、ビジョン、マルチモーダルタスクなど、さまざまな領域にまたがる強力なツールとして登場した。
本稿では,拡散UNetエンコーダを基礎ビジョンエンコーダとして使用し,教師なしゼロショットセグメンテーション手法であるDiffCutを紹介する。
我々の研究は、拡散UNetエンコーダに埋め込まれた極めて正確なセマンティック知識を強調し、下流タスクの基盤ビジョンエンコーダとして機能する。
論文 参考訳(メタデータ) (2024-06-05T01:32:31Z) - UnSegGNet: Unsupervised Image Segmentation using Graph Neural Networks [9.268228808049951]
この研究は、教師なし医療画像とコンピュータビジョンの幅広い分野に貢献する。
これは、現実世界の課題に沿うイメージセグメンテーションのための革新的な方法論である。
提案手法は,医用画像,リモートセンシング,物体認識など,多様な応用の可能性を秘めている。
論文 参考訳(メタデータ) (2024-05-09T19:02:00Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
半教師付きバイオメディカルイメージセグメンテーションのための自己教師付き補正学習パラダイムを提案する。
共有エンコーダと2つの独立デコーダを含むデュアルタスクネットワークを設計する。
異なるタスクのための3つの医用画像分割データセットの実験により,本手法の優れた性能が示された。
論文 参考訳(メタデータ) (2023-01-12T08:19:46Z) - CUTS: A Deep Learning and Topological Framework for Multigranular Unsupervised Medical Image Segmentation [8.307551496968156]
医用画像セグメンテーションのための教師なしディープラーニングフレームワークCUTSを提案する。
各画像に対して、画像内コントラスト学習と局所パッチ再構成による埋め込みマップを生成する。
CUTSは、様々な粒度の特徴をハイライトする粗い粒度のセグメンテーションを連続的に生成する。
論文 参考訳(メタデータ) (2022-09-23T01:09:06Z) - Pseudo-label Guided Cross-video Pixel Contrast for Robotic Surgical
Scene Segmentation with Limited Annotations [72.15956198507281]
シーンセグメンテーションを促進するために,新しい擬似ラベル付きクロスビデオコントラスト学習法であるPGV-CLを提案する。
本研究では,ロボット外科手術データセットEndoVis18と白内障手術データセットCaDISについて検討した。
論文 参考訳(メタデータ) (2022-07-20T05:42:19Z) - Min-Max Similarity: A Contrastive Learning Based Semi-Supervised
Learning Network for Surgical Tools Segmentation [0.0]
コントラスト学習に基づく半教師付きセグメンテーションネットワークを提案する。
従来の最先端技術とは対照的に、両視点トレーニングの対照的な学習形式を導入する。
提案手法は、最先端の半教師付きおよび完全教師付きセグメンテーションアルゴリズムを一貫して上回る。
論文 参考訳(メタデータ) (2022-03-29T01:40:26Z) - Temporally-Weighted Hierarchical Clustering for Unsupervised Action
Segmentation [96.67525775629444]
アクションセグメンテーションとは、ビデオにおける意味的に一貫した視覚概念の境界を推測することを指す。
ビデオ中のセグメンテーション動作に対して,トレーニングを必要としない完全自動かつ教師なしのアプローチを提案する。
提案手法は,ビデオの意味的に一貫性のあるフレームをグループ化できる効果的な時間重み付き階層クラスタリングアルゴリズムである。
論文 参考訳(メタデータ) (2021-03-20T23:30:01Z) - Co-Generation and Segmentation for Generalized Surgical Instrument
Segmentation on Unlabelled Data [49.419268399590045]
正確な機器追跡と拡張現実オーバーレイには、ロボット支援手術のための外科用機器セグメンテーションが必要です。
深層学習法では手術器具のセグメンテーションに最先端のパフォーマンスが示されたが,結果はラベル付きデータに依存する。
本稿では,ロボットによる手術を含むさまざまなデータセット上で,これらの手法の限定的な一般化性を実証する。
論文 参考訳(メタデータ) (2021-03-16T18:41:18Z) - Towards Unsupervised Learning for Instrument Segmentation in Robotic
Surgery with Cycle-Consistent Adversarial Networks [54.00217496410142]
本稿では、入力された内視鏡画像と対応するアノテーションとのマッピングを学習することを目的として、未ペア画像から画像への変換を提案する。
当社のアプローチでは,高価なアノテーションを取得することなく,イメージセグメンテーションモデルをトレーニングすることが可能です。
提案手法をEndovis 2017チャレンジデータセットで検証し,教師付きセグメンテーション手法と競合することを示す。
論文 参考訳(メタデータ) (2020-07-09T01:39:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。