論文の概要: Generalist Segmentation Algorithm for Photoreceptors Analysis in Adaptive Optics Imaging
- arxiv url: http://arxiv.org/abs/2408.14810v2
- Date: Thu, 29 Aug 2024 14:38:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-30 18:15:34.371126
- Title: Generalist Segmentation Algorithm for Photoreceptors Analysis in Adaptive Optics Imaging
- Title(参考訳): 適応光学イメージングにおける感光体解析のための一般偏差アルゴリズム
- Authors: Mikhail Kulyabin, Aline Sindel, Hilde Pedersen, Stuart Gilson, Rigmor Baraas, Andreas Maier,
- Abstract要約: 共焦点適応光学スキャニング光眼鏡(AOSLO)イメージングにより、導波路光受容体の反射から円錐を可視化することができる。
本稿では,AOSLO画像中のコーンの検出とセグメンテーションを行うための,ディープラーニング(DL)に基づく手法を提案する。
- 参考スコア(独自算出の注目度): 3.9111016990170286
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Analyzing the cone photoreceptor pattern in images obtained from the living human retina using quantitative methods can be crucial for the early detection and management of various eye conditions. Confocal adaptive optics scanning light ophthalmoscope (AOSLO) imaging enables visualization of the cones from reflections of waveguiding cone photoreceptors. While there have been significant improvements in automated algorithms for segmenting cones in confocal AOSLO images, the process of labelling data remains labor-intensive and manual. This paper introduces a method based on deep learning (DL) for detecting and segmenting cones in AOSLO images. The models were trained on a semi-automatically labelled dataset of 20 AOSLO batches of images of 18 participants for 0$^{\circ}$, 1$^{\circ}$, and 2$^{\circ}$ from the foveal center. F1 scores were 0.968, 0.958, and 0.954 for 0$^{\circ}$, 1$^{\circ}$, and 2$^{\circ}$, respectively, which is better than previously reported DL approaches. Our method minimizes the need for labelled data by only necessitating a fraction of labelled cones, which is especially beneficial in the field of ophthalmology, where labelled data can often be limited.
- Abstract(参考訳): 生体網膜から得られた画像中のコーン光受容体パターンを定量的な方法で解析することは、様々な眼状態の早期発見と管理に不可欠である。
共焦点適応光学スキャニング光眼鏡(AOSLO)イメージングにより、導波路光受容体の反射から円錐を可視化することができる。
共焦点AOSLO画像におけるコーン分割の自動アルゴリズムは大幅に改善されているが、データラベリングのプロセスは労働集約的で手動のままである。
本稿では,AOSLO画像中のコーンの検出とセグメンテーションを行うための,ディープラーニング(DL)に基づく手法を提案する。
これらのモデルは、葉中心から0$^{\circ}$, 1$^{\circ}$, 2$^{\circ}$の18人の参加者の20のAOSLOバッチの半自動ラベル付きデータセットでトレーニングされた。
F1スコアは, 0.968, 0.958, 0.954 for 0$^{\circ}$, 1$^{\circ}$, 2$^{\circ}$であった。
本手法は,ラベル付きコーンを少量だけ必要とすることで,ラベル付きデータの必要性を最小限に抑え,特にラベル付きデータを制限できる眼科領域において有益である。
関連論文リスト
- Automated Segmentation and Analysis of Cone Photoreceptors in Multimodal Adaptive Optics Imaging [3.7243418909643093]
共焦点・非共焦点分割検出器画像を用いて光受容体を解析し,精度を向上した。
共焦点のためのStarDistと計算モダリティのためのCellposeの2つのU-Netセグメンテーションモデルについて検討した。
論文 参考訳(メタデータ) (2024-10-19T17:10:38Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
医用画像セグメンテーションのための階層化グループ理論を用いた半教師付きコントラスト学習フレームワークARCOを提案する。
まず、分散還元推定の概念を用いてARCOを構築することを提案し、特定の分散還元技術が画素/ボクセルレベルのセグメンテーションタスクにおいて特に有用であることを示す。
5つの2D/3D医療データセットと3つのセマンティックセグメンテーションデータセットのラベル設定が異なる8つのベンチマークで、我々のアプローチを実験的に検証する。
論文 参考訳(メタデータ) (2023-02-03T13:50:25Z) - Semi-supervised GAN for Bladder Tissue Classification in Multi-Domain
Endoscopic Images [10.48945682277992]
本稿では,3つの主要コンポーネントからなるGANに基づく半サプライズドジェネレーティブ・アドリアル・ネットワーク(GAN)を提案する。
組織分類法で得られた平均分類精度、精度、リコールは、それぞれ0.90, 0.88, 0.89である。
論文 参考訳(メタデータ) (2022-12-21T21:32:36Z) - Nuclei Segmentation with Point Annotations from Pathology Images via
Self-Supervised Learning and Co-Training [44.13451004973818]
核分割のための弱い教師付き学習法を提案する。
粗いピクセルレベルのラベルは、ボロノイ図に基づく点アノテーションから導かれる。
病理画像の核分割に適した自己教師付き視覚表現学習法を提案する。
論文 参考訳(メタデータ) (2022-02-16T17:08:44Z) - Cross-level Contrastive Learning and Consistency Constraint for
Semi-supervised Medical Image Segmentation [46.678279106837294]
半教師型医用画像セグメンテーションにおける局所特徴の表現能力を高めるためのクロスレベルコンストラシティブ学習手法を提案する。
クロスレベルなコントラスト学習と一貫性制約の助けを借りて、非ラベル付きデータを効果的に探索してセグメンテーション性能を向上させることができる。
論文 参考訳(メタデータ) (2022-02-08T15:12:11Z) - CNN Filter Learning from Drawn Markers for the Detection of Suggestive
Signs of COVID-19 in CT Images [58.720142291102135]
畳み込みニューラルネットワーク(CNN)のフィルタを推定するために,大規模な注釈付きデータセットやバックプロパゲーションを必要としない手法を提案する。
少数のCT画像に対して、ユーザは、代表的な正常領域と異常領域にマーカーを描画する。
本発明の方法は、カーネルがマークされたものに似た拡張領域に特有な一連の畳み込み層からなる特徴抽出器を生成する。
論文 参考訳(メタデータ) (2021-11-16T15:03:42Z) - AOSLO-net: A deep learning-based method for automatic segmentation of
retinal microaneurysms from adaptive optics scanning laser ophthalmoscope
images [3.8848390007421196]
トレーニングポリシをカスタマイズしたディープニューラルネットワークフレームワークであるAOSLO-netを導入し、AOSLOイメージからMAを自動的に分割する。
87 DR AOSLO画像を用いたAOSLO-netの性能評価を行った。
論文 参考訳(メタデータ) (2021-06-05T05:06:36Z) - Collaborative Unsupervised Domain Adaptation for Medical Image Diagnosis [102.40869566439514]
我々は、Unsupervised Domain Adaptation (UDA)を通じて、対象タスクにおける学習を支援するために、関連ドメインからの豊富なラベル付きデータを活用しようとしている。
クリーンなラベル付きデータやサンプルを仮定するほとんどのUDAメソッドが等しく転送可能であるのとは異なり、協調的教師なしドメイン適応アルゴリズムを革新的に提案する。
提案手法の一般化性能を理論的に解析し,医用画像と一般画像の両方で実験的に評価する。
論文 参考訳(メタデータ) (2020-07-05T11:49:17Z) - Two-stage framework for optic disc localization and glaucoma
classification in retinal fundus images using deep learning [9.421895248069236]
本稿では、まず光学ディスクを検出・ローカライズし、次にそれを健康的・楽観的に分類する2段階フレームワークを提案する。
第1段階はRCNNに基づいており、網膜基底画像から視ディスクを局在させ、抽出する役割を担っている。
第2段階では、Deep CNNを使用して抽出されたディスクを健康または緑内障に分類する。
論文 参考訳(メタデータ) (2020-05-28T20:40:19Z) - Co-Heterogeneous and Adaptive Segmentation from Multi-Source and
Multi-Phase CT Imaging Data: A Study on Pathological Liver and Lesion
Segmentation [48.504790189796836]
我々は,新しいセグメンテーション戦略,コヘテロジネティック・アダプティブセグメンテーション(CHASe)を提案する。
本稿では,外見に基づく半スーパービジョン,マスクに基づく対向ドメイン適応,擬似ラベルを融合した多目的フレームワークを提案する。
CHASeは4.2% sim 9.4%$の範囲で、病理的な肝臓マスクDice-Sorensen係数をさらに改善することができる。
論文 参考訳(メタデータ) (2020-05-27T06:58:39Z) - Segmentation of Cellular Patterns in Confocal Images of Melanocytic
Lesions in vivo via a Multiscale Encoder-Decoder Network (MED-Net) [2.0487455621441377]
マルチスケールデコーダネットワーク(MED-Net)は,パターンのクラスに定量的なラベル付けを行う。
メラノサイト病変の117個の反射共焦点顕微鏡(RCM)モザイクの非重畳分割について,本モデルを訓練・試験した。
論文 参考訳(メタデータ) (2020-01-03T22:34:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。