論文の概要: Correntropy-Based Improper Likelihood Model for Robust Electrophysiological Source Imaging
- arxiv url: http://arxiv.org/abs/2408.14843v1
- Date: Tue, 27 Aug 2024 07:54:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-28 14:33:22.663198
- Title: Correntropy-Based Improper Likelihood Model for Robust Electrophysiological Source Imaging
- Title(参考訳): コレントロピーをベースとしたロバスト電気生理学的ソースイメージングのためのイムプロペラ類似モデル
- Authors: Yuanhao Li, Badong Chen, Zhongxu Hu, Keita Suzuki, Wenjun Bai, Yasuharu Koike, Okito Yamashita,
- Abstract要約: 既存のソースイメージングアルゴリズムは、観測ノイズに対するガウスの仮定を利用して、ベイズ推定の確率関数を構築する。
脳活動の電磁的測定は、通常、様々な人工物に影響され、観測ノイズの非ガウス分布につながる可能性がある。
非ガウス雑音に対して頑健な新しい確率モデルを提案する。
- 参考スコア(独自算出の注目度): 18.298620404141047
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bayesian learning provides a unified skeleton to solve the electrophysiological source imaging task. From this perspective, existing source imaging algorithms utilize the Gaussian assumption for the observation noise to build the likelihood function for Bayesian inference. However, the electromagnetic measurements of brain activity are usually affected by miscellaneous artifacts, leading to a potentially non-Gaussian distribution for the observation noise. Hence the conventional Gaussian likelihood model is a suboptimal choice for the real-world source imaging task. In this study, we aim to solve this problem by proposing a new likelihood model which is robust with respect to non-Gaussian noises. Motivated by the robust maximum correntropy criterion, we propose a new improper distribution model concerning the noise assumption. This new noise distribution is leveraged to structure a robust likelihood function and integrated with hierarchical prior distributions to estimate source activities by variational inference. In particular, the score matching is adopted to determine the hyperparameters for the improper likelihood model. A comprehensive performance evaluation is performed to compare the proposed noise assumption to the conventional Gaussian model. Simulation results show that, the proposed method can realize more precise source reconstruction by designing known ground-truth. The real-world dataset also demonstrates the superiority of our new method with the visual perception task. This study provides a new backbone for Bayesian source imaging, which would facilitate its application using real-world noisy brain signal.
- Abstract(参考訳): ベイズ学習は、電気生理学的ソースイメージングの課題を解決するために統合された骨格を提供する。
この観点から、既存のソースイメージングアルゴリズムは、観測ノイズに対するガウスの仮定を利用して、ベイズ推定の確率関数を構築する。
しかし、脳活動の電磁的測定は通常、様々な人工物に影響され、観測ノイズの非ガウス分布につながる可能性がある。
したがって、従来のガウス確率モデルは、実世界のソースイメージングタスクに最適な選択である。
本研究では,非ガウス雑音に対して頑健な新しい確率モデルを提案することにより,この問題を解決することを目的とする。
頑健な最大コレントロピー基準により、雑音の仮定に関する新しい不適切な分布モデルを提案する。
この新しいノイズ分布は、頑健な確率関数を構築するために利用され、階層的な事前分布と統合されて、変動推定によりソースアクティビティを推定する。
特に、不適切な確率モデルに対するハイパーパラメータを決定するためにスコアマッチングを採用する。
提案した雑音仮定を従来のガウスモデルと比較するための総合的な性能評価を行う。
シミュレーションの結果,提案手法は既知の地盤構造を設計することで,より正確な震源復元を実現することができることがわかった。
実世界のデータセットは、視覚的知覚タスクによる新しい手法の優位性も示している。
この研究はベイズ源画像の新しいバックボーンを提供し、現実世界のノイズ脳信号の利用を促進する。
関連論文リスト
- Diffusion Gaussian Mixture Audio Denoise [23.760755498636943]
本稿では拡散モデルとガウス混合モデルに基づくデノナイズモデルであるDiffGMMモデルを提案する。
まず1D-U-Netを用いて特徴を抽出し,ガウス混合モデルのパラメータを推定する線形層を訓練する。
推定ノイズからノイズ信号を連続的に減算してクリーンオーディオ信号を出力する。
論文 参考訳(メタデータ) (2024-06-13T14:18:10Z) - Learning Gaussian Representation for Eye Fixation Prediction [54.88001757991433]
既存のアイ固定予測方法は、入力画像から原固定点から生成された対応する濃密な固定マップへのマッピングを行う。
本稿ではアイフィグレーションモデリングのためのガウス表現について紹介する。
我々は,リアルタイムな固定予測を実現するために,軽量なバックボーン上にフレームワークを設計する。
論文 参考訳(メタデータ) (2024-03-21T20:28:22Z) - Robust Estimation of Causal Heteroscedastic Noise Models [7.568978862189266]
学生の$t$-distributionは、より小さなサンプルサイズと極端な値で、全体の分布形態を著しく変えることなく、サンプル変数をサンプリングすることの堅牢さで知られている。
我々の経験的評価は、我々の推定器はより堅牢で、合成ベンチマークと実ベンチマークの総合的な性能が向上していることを示している。
論文 参考訳(メタデータ) (2023-12-15T02:26:35Z) - ExposureDiffusion: Learning to Expose for Low-light Image Enhancement [87.08496758469835]
この研究は、拡散モデルと物理ベースの露光モデルとをシームレスに統合することで、この問題に対処する。
提案手法は,バニラ拡散モデルと比較して性能が大幅に向上し,推論時間を短縮する。
提案するフレームワークは、実際のペア付きデータセット、SOTAノイズモデル、および異なるバックボーンネットワークの両方で動作する。
論文 参考訳(メタデータ) (2023-07-15T04:48:35Z) - An Energy-Based Prior for Generative Saliency [62.79775297611203]
本稿では,情報的エネルギーベースモデルを事前分布として採用する,新たな生成正当性予測フレームワークを提案する。
生成サリエンシモデルを用いて,画像から画素単位の不確実性マップを得ることができ,サリエンシ予測におけるモデル信頼度を示す。
実験結果から, エネルギーベース先行モデルを用いた生成塩分率モデルでは, 精度の高い塩分率予測だけでなく, 人間の知覚と整合した信頼性の高い不確実性マップを実現できることが示された。
論文 参考訳(メタデータ) (2022-04-19T10:51:00Z) - Generative models and Bayesian inversion using Laplace approximation [0.3670422696827525]
近年, 生成モデルを用いて高情報化の先行問題として逆問題の解法が提案されている。
導出ベイズ推定は、生成モデルの低次元多様体を用いたアプローチとは対照的に、一貫したものであることを示す。
論文 参考訳(メタデータ) (2022-03-15T10:05:43Z) - Adaptive Multi-View ICA: Estimation of noise levels for optimal
inference [65.94843987207445]
Adaptive MultiView ICA (AVICA) はノイズの多いICAモデルであり、各ビューは共有された独立したソースと付加的なノイズの線形混合である。
AVICAは、その明示的なMMSE推定器により、他のICA法よりも優れたソース推定値が得られる。
実脳磁図(MEG)データでは,分解がサンプリングノイズに対する感度が低く,ノイズ分散推定が生物学的に妥当であることを示す。
論文 参考訳(メタデータ) (2021-02-22T13:10:12Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
実験観測に基づくモデルのパラメータを推定することは、科学的方法の中心である。
特に困難な設定は、モデルが強く不確定であるとき、すなわち、パラメータの異なるセットが同一の観測をもたらすときである。
本稿では,グローバルパラメータを共有する観測の補助的セットによって伝達される付加情報を利用して,その不確定性を破る手法を提案する。
論文 参考訳(メタデータ) (2021-02-12T12:23:13Z) - Statistical Analysis of Signal-Dependent Noise: Application in Blind
Localization of Image Splicing Forgery [20.533239616846874]
本研究では,信号依存ノイズ(SDN)を局所化タスクのスプライシングに適用する。
最大後方マルコフランダムフィールド(MAP-MRF)フレームワークを構築することで、ノイズの可能性を生かし、スプリケートされた物体の異領域を明らかにする。
実験結果から,本手法は有効であり,比較ローカライゼーション性能が得られた。
論文 参考訳(メタデータ) (2020-10-30T11:53:53Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
ブラインド画像復元はコンピュータビジョンでは一般的だが難しい問題である。
両利点を両立させることを目的として,新しいブラインド画像復元手法を提案する。
画像デノイングと超解像という2つの典型的なブラインド赤外線タスクの実験により,提案手法が現状よりも優れた性能を達成できることが実証された。
論文 参考訳(メタデータ) (2020-08-25T03:30:53Z) - A deep-learning based Bayesian approach to seismic imaging and
uncertainty quantification [0.4588028371034407]
不確実性は、不条件の逆問題を扱う際に必須である。
未知の知識を正確に符号化する事前分布を定式化することは、しばしば不可能である。
本稿では,無作為な畳み込みニューラルネットワークの機能形式を,前もって暗黙的な構造として利用することを提案する。
論文 参考訳(メタデータ) (2020-01-13T23:46:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。