Broadening Discovery through Structural Models: Multimodal Combination of Local and Structural Properties for Predicting Chemical Features
- URL: http://arxiv.org/abs/2502.17986v1
- Date: Tue, 25 Feb 2025 08:53:18 GMT
- Title: Broadening Discovery through Structural Models: Multimodal Combination of Local and Structural Properties for Predicting Chemical Features
- Authors: Nikolai Rekut, Alexey Orlov, Klea Ziu, Elizaveta Starykh, Martin Takac, Aleksandr Beznosikov,
- Abstract summary: This study aims to develop a language model that is specifically trained on fingerprints.<n>We introduce a bimodal architecture that integrates this language model with a graph model.<n>This integration results in a significant improvement in predictive performance compared to conventional strategies.
- Score: 42.203344899915464
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, machine learning has profoundly reshaped the field of chemistry, facilitating significant advancements across various applications, including the prediction of molecular properties and the generation of molecular structures. Language models and graph-based models are extensively utilized within this domain, consistently achieving state-of-the-art results across an array of tasks. However, the prevailing practice of representing chemical compounds in the SMILES format -- used by most datasets and many language models -- presents notable limitations as a training data format. In contrast, chemical fingerprints offer a more physically informed representation of compounds, thereby enhancing their suitability for model training. This study aims to develop a language model that is specifically trained on fingerprints. Furthermore, we introduce a bimodal architecture that integrates this language model with a graph model. Our proposed methodology synthesizes these approaches, utilizing RoBERTa as the language model and employing Graph Isomorphism Networks (GIN), Graph Convolutional Networks (GCN) and Graphormer as graph models. This integration results in a significant improvement in predictive performance compared to conventional strategies for tasks such as Quantitative Structure-Activity Relationship (QSAR) and the prediction of nuclear magnetic resonance (NMR) spectra, among others.
Related papers
- GNN-CNN: An Efficient Hybrid Model of Convolutional and Graph Neural Networks for Text Representation [0.0]
This study introduces a novel model architecture that combines Graph Neural Networks (GNNs) and Convolutional Neural Networks (CNNs)<n>The model processes compact batches of character-level inputs without requiring padding or truncation.<n>It captures local contextual patterns using CNNs, expands local receptive fields via lattice-based graph structures, and employs small-world graphs to aggregate document-level information.
arXiv Detail & Related papers (2025-07-10T04:13:53Z) - Pre-trained Molecular Language Models with Random Functional Group Masking [54.900360309677794]
We propose a SMILES-based underlineem Molecular underlineem Language underlineem Model, which randomly masking SMILES subsequences corresponding to specific molecular atoms.
This technique aims to compel the model to better infer molecular structures and properties, thus enhancing its predictive capabilities.
arXiv Detail & Related papers (2024-11-03T01:56:15Z) - Cross-Modal Learning for Chemistry Property Prediction: Large Language Models Meet Graph Machine Learning [0.0]
We introduce a Multi-Modal Fusion (MMF) framework that harnesses the analytical prowess of Graph Neural Networks (GNNs) and the linguistic generative and predictive abilities of Large Language Models (LLMs)
Our framework combines the effectiveness of GNNs in modeling graph-structured data with the zero-shot and few-shot learning capabilities of LLMs, enabling improved predictions while reducing the risk of overfitting.
arXiv Detail & Related papers (2024-08-27T11:10:39Z) - GraphBPE: Molecular Graphs Meet Byte-Pair Encoding [12.985482706851846]
We propose GraphBPE, which tokenizes a molecular graph into different substructures and acts as a preprocessing schedule independent of the model architectures.
Our experiments on 3 graph-level classification and 3 graph-level regression datasets show that data preprocessing could boost the performance of models for molecular graphs.
arXiv Detail & Related papers (2024-07-26T18:45:09Z) - MolTRES: Improving Chemical Language Representation Learning for Molecular Property Prediction [14.353313239109337]
MolTRES is a novel chemical language representation learning framework.
It incorporates generator-discriminator training, allowing the model to learn from more challenging examples.
Our model outperforms existing state-of-the-art models on popular molecular property prediction tasks.
arXiv Detail & Related papers (2024-07-09T01:14:28Z) - GraphER: A Structure-aware Text-to-Graph Model for Entity and Relation Extraction [3.579132482505273]
Information extraction is an important task in Natural Language Processing (NLP)
We propose a novel approach to this task by formulating it as graph structure learning (GSL)
This formulation allows for better interaction and structure-informed decisions for entity and relation prediction.
arXiv Detail & Related papers (2024-04-18T20:09:37Z) - Towards Graph Foundation Models: A Survey and Beyond [66.37994863159861]
Foundation models have emerged as critical components in a variety of artificial intelligence applications.
The capabilities of foundation models to generalize and adapt motivate graph machine learning researchers to discuss the potential of developing a new graph learning paradigm.
This article introduces the concept of Graph Foundation Models (GFMs), and offers an exhaustive explanation of their key characteristics and underlying technologies.
arXiv Detail & Related papers (2023-10-18T09:31:21Z) - GIT-Mol: A Multi-modal Large Language Model for Molecular Science with
Graph, Image, and Text [25.979382232281786]
We introduce GIT-Mol, a multi-modal large language model that integrates the Graph, Image, and Text information.
We achieve a 5%-10% accuracy increase in properties prediction and a 20.2% boost in molecule generation validity.
arXiv Detail & Related papers (2023-08-14T03:12:29Z) - Class-level Structural Relation Modelling and Smoothing for Visual
Representation Learning [12.247343963572732]
This paper presents a framework termed bfClass-level Structural Relation Modeling and Smoothing for Visual Representation Learning (CSRMS)
It includes the Class-level Relation Modelling, Class-aware GraphGuided Sampling, and Graph-Guided Representation Learning modules.
Experiments demonstrate the effectiveness of structured knowledge modelling for enhanced representation learning and show that CSRMS can be incorporated with any state-of-the-art visual representation learning models for performance gains.
arXiv Detail & Related papers (2023-08-08T09:03:46Z) - Bi-level Contrastive Learning for Knowledge-Enhanced Molecule Representations [68.32093648671496]
We introduce GODE, which accounts for the dual-level structure inherent in molecules.<n> Molecules possess an intrinsic graph structure and simultaneously function as nodes within a broader molecular knowledge graph.<n>By pre-training two GNNs on different graph structures, GODE effectively fuses molecular structures with their corresponding knowledge graph substructures.
arXiv Detail & Related papers (2023-06-02T15:49:45Z) - GIMLET: A Unified Graph-Text Model for Instruction-Based Molecule
Zero-Shot Learning [71.89623260998934]
This study investigates the feasibility of employing natural language instructions to accomplish molecule-related tasks in a zero-shot setting.
Existing molecule-text models perform poorly in this setting due to inadequate treatment of instructions and limited capacity for graphs.
We propose GIMLET, which unifies language models for both graph and text data.
arXiv Detail & Related papers (2023-05-28T18:27:59Z) - Scaling Vision-Language Models with Sparse Mixture of Experts [128.0882767889029]
We show that mixture-of-experts (MoE) techniques can achieve state-of-the-art performance on a range of benchmarks over dense models of equivalent computational cost.
Our research offers valuable insights into stabilizing the training of MoE models, understanding the impact of MoE on model interpretability, and balancing the trade-offs between compute performance when scaling vision-language models.
arXiv Detail & Related papers (2023-03-13T16:00:31Z) - KGLM: Integrating Knowledge Graph Structure in Language Models for Link
Prediction [0.0]
We introduce a new entity/relation embedding layer that learns to differentiate distinctive entity and relation types.
We show that further pre-training the language models with this additional embedding layer using the triples extracted from the knowledge graph, followed by the standard fine-tuning phase sets a new state-of-the-art performance for the link prediction task on the benchmark datasets.
arXiv Detail & Related papers (2022-11-04T20:38:12Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
Graph neural networks (GNNs) are a novel machine learning method that directly work on the molecular graph.
GNNs allow to learn properties in an end-to-end fashion, thereby avoiding the need for informative descriptors.
We describe the fundamentals of GNNs and demonstrate the application of GNNs via two examples for molecular property prediction.
arXiv Detail & Related papers (2022-07-25T11:30:44Z) - Do Large Scale Molecular Language Representations Capture Important
Structural Information? [31.76876206167457]
We present molecular embeddings obtained by training an efficient transformer encoder model, referred to as MoLFormer.
Experiments show that the learned molecular representation performs competitively, when compared to graph-based and fingerprint-based supervised learning baselines.
arXiv Detail & Related papers (2021-06-17T14:33:55Z) - GraphFormers: GNN-nested Transformers for Representation Learning on
Textual Graph [53.70520466556453]
We propose GraphFormers, where layerwise GNN components are nested alongside the transformer blocks of language models.
With the proposed architecture, the text encoding and the graph aggregation are fused into an iterative workflow.
In addition, a progressive learning strategy is introduced, where the model is successively trained on manipulated data and original data to reinforce its capability of integrating information on graph.
arXiv Detail & Related papers (2021-05-06T12:20:41Z) - Unified Graph Structured Models for Video Understanding [93.72081456202672]
We propose a message passing graph neural network that explicitly models relational-temporal relations.
We show how our method is able to more effectively model relationships between relevant entities in the scene.
arXiv Detail & Related papers (2021-03-29T14:37:35Z) - Few-Shot Graph Learning for Molecular Property Prediction [46.60746023179724]
We propose Meta-MGNN, a novel model for few-shot molecular property prediction.
To exploit unlabeled molecular information, Meta-MGNN further incorporates molecular structure, attribute based self-supervised modules and self-attentive task weights.
Extensive experiments on two public multi-property datasets demonstrate that Meta-MGNN outperforms a variety of state-of-the-art methods.
arXiv Detail & Related papers (2021-02-16T01:55:34Z) - Multi-View Graph Neural Networks for Molecular Property Prediction [67.54644592806876]
We present Multi-View Graph Neural Network (MV-GNN), a multi-view message passing architecture.
In MV-GNN, we introduce a shared self-attentive readout component and disagreement loss to stabilize the training process.
We further boost the expressive power of MV-GNN by proposing a cross-dependent message passing scheme.
arXiv Detail & Related papers (2020-05-17T04:46:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.