The Benefits of Balance: From Information Projections to Variance Reduction
- URL: http://arxiv.org/abs/2408.15065v1
- Date: Tue, 27 Aug 2024 13:48:15 GMT
- Title: The Benefits of Balance: From Information Projections to Variance Reduction
- Authors: Lang Liu, Ronak Mehta, Soumik Pal, Zaid Harchaoui,
- Abstract summary: We show that an iterative algorithm, usually used to avoid representation collapse, enjoys an unsuspected benefit.
We provide non-asymptotic bounds quantifying this variance reduction effect and relate them to the eigendecays of appropriately defined Markov operators.
We explain how various forms of data balancing in contrastive multimodal learning and self-supervised clustering can be interpreted as instances of this variance reduction scheme.
- Score: 7.082773426322819
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data balancing across multiple modalities/sources appears in various forms in several foundation models (e.g., CLIP and DINO) achieving universal representation learning. We show that this iterative algorithm, usually used to avoid representation collapse, enjoys an unsuspected benefit: reducing the variance of estimators that are functionals of the empirical distribution over these sources. We provide non-asymptotic bounds quantifying this variance reduction effect and relate them to the eigendecays of appropriately defined Markov operators. We explain how various forms of data balancing in contrastive multimodal learning and self-supervised clustering can be interpreted as instances of this variance reduction scheme.
Related papers
- Unsupervised Representation Learning by Balanced Self Attention Matching [2.3020018305241337]
We present a self-supervised method for embedding image features called BAM.
We obtain rich representations and avoid feature collapse by minimizing a loss that matches these distributions to their globally balanced and entropy regularized version.
We show competitive performance with leading methods on both semi-supervised and transfer-learning benchmarks.
arXiv Detail & Related papers (2024-08-04T12:52:44Z) - Mitigating Shortcut Learning with Diffusion Counterfactuals and Diverse Ensembles [95.49699178874683]
We propose DiffDiv, an ensemble diversification framework exploiting Diffusion Probabilistic Models (DPMs)
We show that DPMs can generate images with novel feature combinations, even when trained on samples displaying correlated input features.
We show that DPM-guided diversification is sufficient to remove dependence on shortcut cues, without a need for additional supervised signals.
arXiv Detail & Related papers (2023-11-23T15:47:33Z) - Aggregation Weighting of Federated Learning via Generalization Bound
Estimation [65.8630966842025]
Federated Learning (FL) typically aggregates client model parameters using a weighting approach determined by sample proportions.
We replace the aforementioned weighting method with a new strategy that considers the generalization bounds of each local model.
arXiv Detail & Related papers (2023-11-10T08:50:28Z) - Leveraging Diffusion Disentangled Representations to Mitigate Shortcuts
in Underspecified Visual Tasks [92.32670915472099]
We propose an ensemble diversification framework exploiting the generation of synthetic counterfactuals using Diffusion Probabilistic Models (DPMs)
We show that diffusion-guided diversification can lead models to avert attention from shortcut cues, achieving ensemble diversity performance comparable to previous methods requiring additional data collection.
arXiv Detail & Related papers (2023-10-03T17:37:52Z) - Learning Disentangled Discrete Representations [22.5004558029479]
We show the relationship between discrete latent spaces and disentangled representations by replacing the standard Gaussian variational autoencoder with a tailored categorical variational autoencoder.
We provide both analytical and empirical findings that demonstrate the advantages of discrete VAEs for learning disentangled representations.
arXiv Detail & Related papers (2023-07-26T12:29:58Z) - Supervised Contrastive Learning with Heterogeneous Similarity for
Distribution Shifts [3.7819322027528113]
We propose a new regularization using the supervised contrastive learning to prevent such overfitting and to train models that do not degrade their performance under the distribution shifts.
Experiments on benchmark datasets that emulate distribution shifts, including subpopulation shift and domain generalization, demonstrate the advantage of the proposed method.
arXiv Detail & Related papers (2023-04-07T01:45:09Z) - Invariant Causal Mechanisms through Distribution Matching [86.07327840293894]
In this work we provide a causal perspective and a new algorithm for learning invariant representations.
Empirically we show that this algorithm works well on a diverse set of tasks and in particular we observe state-of-the-art performance on domain generalization.
arXiv Detail & Related papers (2022-06-23T12:06:54Z) - Accounting for Unobserved Confounding in Domain Generalization [107.0464488046289]
This paper investigates the problem of learning robust, generalizable prediction models from a combination of datasets.
Part of the challenge of learning robust models lies in the influence of unobserved confounders.
We demonstrate the empirical performance of our approach on healthcare data from different modalities.
arXiv Detail & Related papers (2020-07-21T08:18:06Z) - On the Benefits of Invariance in Neural Networks [56.362579457990094]
We show that training with data augmentation leads to better estimates of risk and thereof gradients, and we provide a PAC-Bayes generalization bound for models trained with data augmentation.
We also show that compared to data augmentation, feature averaging reduces generalization error when used with convex losses, and tightens PAC-Bayes bounds.
arXiv Detail & Related papers (2020-05-01T02:08:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.