論文の概要: BaichuanSEED: Sharing the Potential of ExtensivE Data Collection and Deduplication by Introducing a Competitive Large Language Model Baseline
- arxiv url: http://arxiv.org/abs/2408.15079v1
- Date: Tue, 27 Aug 2024 14:08:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-28 13:33:40.770354
- Title: BaichuanSEED: Sharing the Potential of ExtensivE Data Collection and Deduplication by Introducing a Competitive Large Language Model Baseline
- Title(参考訳): BaichuanSEED: 競争力のある大規模言語モデルベースラインの導入による拡張データ収集と重複の可能性を共有
- Authors: Guosheng Dong, Da Pan, Yiding Sun, Shusen Zhang, Zheng Liang, Xin Wu, Yanjun Shen, Fan Yang, Haoze Sun, Tianpeng Li, Mingan Lin, Jianhua Xu, Yufan Zhang, Xiaonan Nie, Lei Su, Bingning Wang, Wentao Zhang, Jiaxin Mao, Zenan Zhou, Weipeng Chen,
- Abstract要約: LLM(Large Language Models)の一般的な能力は、いくつかの機関によって商業秘密として扱われる広範な事前訓練データセットに大きく依存している。
我々は、その有効性と可能性を検証するために、普遍的に適用可能なデータ処理パイプラインの詳細をオープンソース化する。
BaichuanSEEDはトレーニングを通じて一貫性と予測可能性を示し、包括的なベンチマークで同等のパフォーマンスを達成する。
- 参考スコア(独自算出の注目度): 34.518474035662905
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The general capabilities of Large Language Models (LLM) highly rely on the composition and selection on extensive pretraining datasets, treated as commercial secrets by several institutions. To mitigate this issue, we open-source the details of a universally applicable data processing pipeline and validate its effectiveness and potential by introducing a competitive LLM baseline. Specifically, the data processing pipeline consists of broad collection to scale up and reweighting to improve quality. We then pretrain a 7B model BaichuanSEED with 3T tokens processed by our pipeline without any deliberate downstream task-related optimization, followed by an easy but effective supervised fine-tuning stage. BaichuanSEED demonstrates consistency and predictability throughout training and achieves comparable performance on comprehensive benchmarks with several commercial advanced large language models, such as Qwen1.5 and Llama3. We also conduct several heuristic experiments to discuss the potential for further optimization of downstream tasks, such as mathematics and coding.
- Abstract(参考訳): LLM(Large Language Models)の一般的な能力は、いくつかの機関によって商業秘密として扱われる広範な事前訓練データセットの構成と選択に大きく依存している。
この問題を軽減するため、我々は、汎用データ処理パイプラインの詳細をオープンソース化し、競争力のあるLCMベースラインを導入することにより、その有効性と可能性を検証する。
具体的には、データ処理パイプラインは、スケールアップと品質向上のために、広範なコレクションで構成されている。
そして、故意にダウンストリームタスク関連の最適化をすることなく、パイプラインによって処理された3Tトークンで、7BモデルBaichuanSEEDを事前訓練し、その後、簡単で効果的な微調整ステージを作成します。
BaichuanSEEDはトレーニング全体を通じて一貫性と予測可能性を示し、Qwen1.5やLlama3といったいくつかの商用高度な大規模言語モデルで包括的なベンチマークで同等のパフォーマンスを達成する。
また、数回のヒューリスティックな実験を行い、数学やコーディングといった下流タスクのさらなる最適化の可能性について議論する。
関連論文リスト
- Empowering Large Language Models in Wireless Communication: A Novel Dataset and Fine-Tuning Framework [81.29965270493238]
我々は,無線通信アプリケーションのための大規模言語モデル(LLM)の評価と微調整を目的とした,特殊なデータセットを開発した。
データセットには、真/偽と複数選択型を含む、さまざまなマルチホップ質問が含まれている。
本稿では,PVI(Pointwise V-Information)に基づく微調整手法を提案する。
論文 参考訳(メタデータ) (2025-01-16T16:19:53Z) - Aligning Instruction Tuning with Pre-training [81.4748965653345]
そこで我々は,AITP(Aligning Instruction Tuning with Pre-training)を提案する。
8つのベンチマークで3つの完全にオープンな大規模言語モデル(LLM)上で,AITPによる一貫したパフォーマンス向上を示す。
論文 参考訳(メタデータ) (2025-01-16T08:27:40Z) - Federated Fine-Tuning of LLMs: Framework Comparison and Research Directions [59.5243730853157]
Federated Learning(FL)は、分散プライベートデータセットを使用して、トレーニング済みの大規模言語モデル(LLM)を微調整するための、プライバシ保護ソリューションを提供する。
本稿では、知識蒸留(KD)とスプリットラーニング(SL)を統合し、これらの問題を緩和する3つの先進的連合LLM(FedLLM)フレームワークの比較分析を行う。
論文 参考訳(メタデータ) (2025-01-08T11:37:06Z) - TL-Training: A Task-Feature-Based Framework for Training Large Language Models in Tool Use [46.20445033086643]
大規模言語モデル(LLM)は、外部環境と対話するツールを活用することで、目覚ましい進歩を遂げる。
大規模なデータセットに依存する標準教師付き微調整アプローチでは、ツール使用時のタスク固有の特性を見落としていることが多い。
本稿では,最適下トレーニングデータの効果を緩和するタスク機能ベースのフレームワークであるTL-Trainingを提案する。
論文 参考訳(メタデータ) (2024-12-20T02:21:36Z) - MAmmoTH-VL: Eliciting Multimodal Reasoning with Instruction Tuning at Scale [66.73529246309033]
MLLM(Multimodal large language model)は、多モーダルタスクにおいて大きな可能性を秘めている。
既存の命令チューニングデータセットは、中間的合理性のないフレーズレベルの答えのみを提供する。
そこで本研究では,大規模マルチモーダル・インストラクション・チューニング・データセットを構築するためのスケーラブルで費用対効果の高い手法を提案する。
論文 参考訳(メタデータ) (2024-12-06T18:14:24Z) - Bucket Pre-training is All You Need [9.332544709626875]
大規模言語モデル (LLM) は様々な自然言語処理タスクにおいて例外的な性能を示した。
文書の連結と分割を伴う事前学習のための従来の固定長データ合成戦略は、ノイズを導入し、長距離依存関係をキャプチャするモデルの能力を制限できる。
固定長のパラダイムを超えて,より柔軟で効率的な事前学習手法を提供するマルチポケットデータ合成手法を提案する。
論文 参考訳(メタデータ) (2024-07-10T09:27:23Z) - LESS: Selecting Influential Data for Targeted Instruction Tuning [64.78894228923619]
本稿では,データの影響を推定し,命令データ選択のための低ランクグレーディエント類似度探索を行うアルゴリズムであるLESSを提案する。
LESS選択したデータの5%のトレーニングは、さまざまなダウンストリームタスクにわたる完全なデータセットでのトレーニングよりも優れています。
我々の方法は、意図した下流アプリケーションに必要な推論スキルを識別するために、表面的なフォームキューを超えています。
論文 参考訳(メタデータ) (2024-02-06T19:18:04Z) - Zero- and Few-Shots Knowledge Graph Triplet Extraction with Large
Language Models [7.919349589245355]
本研究では,Zero-およびFew-Shots設定において,さまざまなサイズの大規模言語モデル(LLM)のトリプレット抽出機能を検証した。
我々は,知識ベース(KB)からコンテキスト情報を動的に収集するパイプラインを提案した。
論文 参考訳(メタデータ) (2023-12-04T15:12:04Z) - Towards Large-scale 3D Representation Learning with Multi-dataset Point Prompt Training [44.790636524264]
ポイント・プロンプト・トレーニング(Point Prompt Training)は、3D表現学習の文脈におけるマルチデータセットのシナジスティック学習のための新しいフレームワークである。
シナジスティック学習に関連する負の移動を克服し、一般化可能な表現を生成する。
教師付きマルチデータセットトレーニングを備えた1つの重み付きモデルを用いて、各データセットの最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-08-18T17:59:57Z) - Towards All-in-one Pre-training via Maximizing Multi-modal Mutual
Information [77.80071279597665]
マルチモーダル相互情報事前学習(M3I事前学習)を最大化するオールインワン単段階事前学習手法を提案する。
提案手法は,ImageNet分類,オブジェクト検出,LVIS長鎖オブジェクト検出,ADE20kセマンティックセマンティックセマンティックセマンティクスなど,様々なビジョンベンチマークにおける事前学習手法よりも優れた性能を実現する。
論文 参考訳(メタデータ) (2022-11-17T18:59:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。