論文の概要: Enhancing License Plate Super-Resolution: A Layout-Aware and Character-Driven Approach
- arxiv url: http://arxiv.org/abs/2408.15103v1
- Date: Tue, 27 Aug 2024 14:40:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-28 13:23:24.344875
- Title: Enhancing License Plate Super-Resolution: A Layout-Aware and Character-Driven Approach
- Title(参考訳): ライセンスプレートの超解法を強化する - レイアウト認識とキャラクタ駆動アプローチ
- Authors: Valfride Nascimento, Rayson Laroca, Rafael O. Ribeiro, William Robson Schwartz, David Menotti,
- Abstract要約: 本稿では, LPRタスク自体の性能だけでなく, 解像度, テクスチャ, 構造的詳細などの要因を考慮した新しい損失関数Layout and Character Oriented Focal Loss(LCOFL)を提案する。
我々は、変形可能な畳み込みと共有重み付けを用いた文字特徴学習を強化し、識別器として光学文字認識(OCR)モデルを用いたGANベースのトレーニングアプローチを採用する。
実験の結果, 文字再構成の精度は向上し, 定量化と定性化の両面で, 最先端の2つの手法に優れていた。
- 参考スコア(独自算出の注目度): 2.9628782269544685
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite significant advancements in License Plate Recognition (LPR) through deep learning, most improvements rely on high-resolution images with clear characters. This scenario does not reflect real-world conditions where traffic surveillance often captures low-resolution and blurry images. Under these conditions, characters tend to blend with the background or neighboring characters, making accurate LPR challenging. To address this issue, we introduce a novel loss function, Layout and Character Oriented Focal Loss (LCOFL), which considers factors such as resolution, texture, and structural details, as well as the performance of the LPR task itself. We enhance character feature learning using deformable convolutions and shared weights in an attention module and employ a GAN-based training approach with an Optical Character Recognition (OCR) model as the discriminator to guide the super-resolution process. Our experimental results show significant improvements in character reconstruction quality, outperforming two state-of-the-art methods in both quantitative and qualitative measures. Our code is publicly available at https://github.com/valfride/lpsr-lacd
- Abstract(参考訳): ディープラーニングによるライセンスプレート認識(LPR)の大幅な進歩にもかかわらず、ほとんどの改善は明確な文字を持つ高解像度画像に依存している。
このシナリオは、交通監視がしばしば低解像度でぼやけた画像をキャプチャする現実世界の状況を反映していない。
これらの条件下では、文字は背景や隣接する文字と混同されがちであり、正確なLPRは困難である。
この問題に対処するために,LCOFL(Layout and Character Oriented Focal Loss)という新たな損失関数を導入する。
我々は、変形可能な畳み込みと共有重み付けを用いた文字特徴学習を強化し、光学文字認識(OCR)モデルを用いたGANベースのトレーニングアプローチを用いて超解像過程を導出する。
実験結果から, 文字再構成の精度は向上し, 定量化と定性化の両面で, 最先端の2つの手法に優れていた。
私たちのコードはhttps://github.com/valfride/lpsr-lacdで公開されています。
関連論文リスト
- CoSeR: Bridging Image and Language for Cognitive Super-Resolution [74.24752388179992]
本稿では,低解像度画像の理解能力を備えたSRモデルを実現するCoSeR(Cognitive Super-Resolution)フレームワークを提案する。
画像の外観と言語理解を組み合わせることで、認知的な埋め込みを生成する。
画像の忠実度をさらに向上させるため、「オール・イン・アテンション」と呼ばれる新しい条件注入方式を提案する。
論文 参考訳(メタデータ) (2023-11-27T16:33:29Z) - One-stage Low-resolution Text Recognition with High-resolution Knowledge
Transfer [53.02254290682613]
現在の低解像度テキスト認識のソリューションは、通常2段階のパイプラインに依存している。
本稿では,多段階の知識伝達を実現するための効率的かつ効果的な知識蒸留フレームワークを提案する。
実験の結果、提案されたワンステージパイプラインは、超高解像度ベースの2ステージフレームワークよりも大幅に優れていた。
論文 参考訳(メタデータ) (2023-08-05T02:33:45Z) - Super-Resolution of License Plate Images Using Attention Modules and
Sub-Pixel Convolution Layers [3.8831062015253055]
監視画像における構造的特徴およびテクスチャ的特徴の検出を強化するために,Single-Image Super-Resolution (SISR) アプローチを導入する。
提案手法は,サブピクセルの畳み込み層と,光学的文字認識(OCR)モデルを用いて特徴抽出を行うロス関数を含む。
以上の結果から, これらの低解像度合成画像の再構成手法は, 定量化と定性化の両面で, 既存の画像よりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2023-05-27T00:17:19Z) - CRC-RL: A Novel Visual Feature Representation Architecture for
Unsupervised Reinforcement Learning [7.4010632660248765]
改良された視覚的特徴を学習するために,CRC損失と呼ばれる不均一な損失関数を用いた新しいアーキテクチャを提案する。
提案したアーキテクチャはCRC-RLと呼ばれ、Deep Mind Controlスイート環境における既存の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2023-01-31T08:41:18Z) - Combining Attention Module and Pixel Shuffle for License Plate
Super-Resolution [3.8831062015253055]
本研究は,低解像度・低画質画像におけるライセンスプレート(LP)再構成に焦点を当てた。
本稿では、注目/変圧器モジュールの概念を拡張したシングルイメージ超解法(SISR)アプローチを提案する。
実験では, 提案手法は, 定量的および定性的に, ベースラインよりも優れていた。
論文 参考訳(メタデータ) (2022-10-30T13:05:07Z) - Hierarchical Similarity Learning for Aliasing Suppression Image
Super-Resolution [64.15915577164894]
エイリアスの影響を抑制するために階層画像超解像ネットワーク(HSRNet)を提案する。
HSRNetは、他の作品よりも定量的かつ視覚的なパフォーマンスを向上し、エイリアスをより効果的に再送信する。
論文 参考訳(メタデータ) (2022-06-07T14:55:32Z) - Hierarchical Deep CNN Feature Set-Based Representation Learning for
Robust Cross-Resolution Face Recognition [59.29808528182607]
クロスリゾリューション顔認識(CRFR)は、インテリジェントな監視およびバイオメトリックフォレンジックにおいて重要である。
既存の浅層学習と深層学習に基づく手法は、HR-LR対を共同特徴空間にマッピングすることに焦点を当てている。
本研究では,多レベル深層畳み込みニューラルネットワーク(CNN)の機能を完全に活用し,堅牢なCRFRを実現することを目的とする。
論文 参考訳(メタデータ) (2021-03-25T14:03:42Z) - Interpretable Detail-Fidelity Attention Network for Single Image
Super-Resolution [89.1947690981471]
本研究では,スムースとディテールを段階的に分割・収束的に処理する,目的・解釈可能なディテール・ファイダリティ・アテンション・ネットワークを提案する。
特に,詳細推論において顕著な解釈可能な特徴表現のためのヘシアンフィルタを提案する。
実験により,提案手法は最先端手法よりも優れた性能を示すことが示された。
論文 参考訳(メタデータ) (2020-09-28T08:31:23Z) - Characteristic Regularisation for Super-Resolving Face Images [81.84939112201377]
既存の顔画像超解像法(SR)は、主に人工的にダウンサンプリングされた低解像度(LR)画像の改善に焦点を当てている。
従来の非教師なしドメイン適応(UDA)手法は、未ペアの真のLRとHRデータを用いてモデルをトレーニングすることでこの問題に対処する。
これにより、視覚的特徴を構成することと、画像の解像度を高めることの2つのタスクで、モデルをオーバーストレッチする。
従来のSRモデルとUDAモデルの利点を結合する手法を定式化する。
論文 参考訳(メタデータ) (2019-12-30T16:27:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。