Automatic 8-tissue Segmentation for 6-month Infant Brains
- URL: http://arxiv.org/abs/2408.15198v1
- Date: Tue, 27 Aug 2024 16:58:23 GMT
- Title: Automatic 8-tissue Segmentation for 6-month Infant Brains
- Authors: Yilan Dong, Vanessa Kyriakopoulou, Irina Grigorescu, Grainne McAlonan, Dafnis Batalle, Maria Deprez,
- Abstract summary: We propose the first 8-tissue segmentation pipeline for six-month-old infant brains.
Our pipeline takes raw 6-month images as inputs and generates the 8-tissue segmentation as outputs.
Our evaluation with real 6-month images achieved a DICE score of 0.92, an HD95 of 1.6, and an ASSD of 0.42.
- Score: 0.7351161122478707
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Numerous studies have highlighted that atypical brain development, particularly during infancy and toddlerhood, is linked to an increased likelihood of being diagnosed with a neurodevelopmental condition, such as autism. Accurate brain tissue segmentations for morphological analysis are essential in numerous infant studies. However, due to ongoing white matter (WM) myelination changing tissue contrast in T1- and T2-weighted images, automatic tissue segmentation in 6-month infants is particularly difficult. On the other hand, manual labelling by experts is time-consuming and labor-intensive. In this study, we propose the first 8-tissue segmentation pipeline for six-month-old infant brains. This pipeline utilizes domain adaptation (DA) techniques to leverage our longitudinal data, including neonatal images segmented with the neonatal Developing Human Connectome Project structural pipeline. Our pipeline takes raw 6-month images as inputs and generates the 8-tissue segmentation as outputs, forming an end-to-end segmentation pipeline. The segmented tissues include WM, gray matter (GM), cerebrospinal fluid (CSF), ventricles, cerebellum, basal ganglia, brainstem, and hippocampus/amygdala. Cycle-Consistent Generative Adversarial Network (CycleGAN) and Attention U-Net were employed to achieve the image contrast transformation between neonatal and 6-month images and perform tissue segmentation on the synthesized 6-month images (neonatal images with 6-month intensity contrast), respectively. Moreover, we incorporated the segmentation outputs from Infant Brain Extraction and Analysis Toolbox (iBEAT) and another Attention U-Net to further enhance the performance and construct the end-to-end segmentation pipeline. Our evaluation with real 6-month images achieved a DICE score of 0.92, an HD95 of 1.6, and an ASSD of 0.42.
Related papers
- AtlasSeg: Atlas Prior Guided Dual-U-Net for Cortical Segmentation in Fetal Brain MRI [26.806048154974707]
Existing segmentation networks can only implicitly learn age-related features.
We introduce AtlasSeg, a dual-U-shape convolution network that explicitly integrates GA-specific information as guidance.
arXiv Detail & Related papers (2024-11-05T07:16:32Z) - Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation [53.70131202548981]
We present a two-step segmentation framework employing Knowledge-Guided Prompt Learning (KGPL) for brain MRI.
Specifically, we first pre-train segmentation models on large-scale datasets with sub-optimal labels.
The introduction of knowledge-wise prompts captures semantic relationships between anatomical variability and biological processes.
arXiv Detail & Related papers (2024-07-31T04:32:43Z) - Cas-DiffCom: Cascaded diffusion model for infant longitudinal
super-resolution 3D medical image completion [47.83003164569194]
We propose a two-stage cascaded diffusion model, Cas-DiffCom, for dense and longitudinal 3D infant brain MRI completion and super-resolution.
Experiment results validate that Cas-DiffCom achieves both individual consistency and high fidelity in longitudinal infant brain image completion.
arXiv Detail & Related papers (2024-02-21T12:54:40Z) - ASC: Appearance and Structure Consistency for Unsupervised Domain
Adaptation in Fetal Brain MRI Segmentation [28.40275722324598]
We propose a practical unsupervised domain adaptation (UDA) setting that adapts the segmentation labels of high-quality fetal brain atlases to unlabeled fetal brain MRI data.
We adapt the segmentation model to the appearances of different domains by constraining the consistency before and after a frequency-based image transformation.
Experiments on FeTA 2021 benchmark demonstrate the effectiveness of our ASC in comparison to registration-based, semi-supervised learning-based, and existing UDA-based methods.
arXiv Detail & Related papers (2023-10-22T04:12:06Z) - Tissue Classification During Needle Insertion Using Self-Supervised
Contrastive Learning and Optical Coherence Tomography [53.38589633687604]
We propose a deep neural network that classifies the tissues from the phase and intensity data of complex OCT signals acquired at the needle tip.
We show that with 10% of the training set, our proposed pretraining strategy helps the model achieve an F1 score of 0.84 whereas the model achieves an F1 score of 0.60 without it.
arXiv Detail & Related papers (2023-04-26T14:11:04Z) - Brain Tissue Segmentation Across the Human Lifespan via Supervised
Contrastive Learning [34.82366750668948]
We make the first attempt to segment brain tissues across the entire human lifespan (0-100 years of age) using a unified deep learning model.
Our model accurately segments brain tissues across the lifespan and outperforms existing methods.
arXiv Detail & Related papers (2023-01-03T21:54:17Z) - Learning-Based Keypoint Registration for Fetoscopic Mosaicking [65.02392513942533]
In Twin-to-Twin Transfusion Syndrome (TTTS), abnormal vascular anastomoses in the monochorionic placenta can produce uneven blood flow between the two fetuses.
We propose a learning-based framework for in-vivo fetoscopy frame registration for field-of-view expansion.
arXiv Detail & Related papers (2022-07-26T21:21:12Z) - CAS-Net: Conditional Atlas Generation and Brain Segmentation for Fetal
MRI [10.127399319119911]
We propose a novel network structure that can simultaneously generate conditional atlases and predict brain tissue segmentation.
The proposed method is trained and evaluated on 253 subjects from the developing Human Connectome Project.
arXiv Detail & Related papers (2022-05-17T11:23:02Z) - An automatic pipeline for atlas-based fetal and neonatal brain
segmentation and analysis [1.3198175418055964]
We report the creation of two new fetal atlases, and their use within the pipeline for atlas-based segmentation.
The pipeline is also able to extract cortical and pial surfaces and compute features, such as curvature, thickness, sulcal depth, and local gyrification index.
arXiv Detail & Related papers (2022-05-16T11:15:26Z) - Multi-Site Infant Brain Segmentation Algorithms: The iSeg-2019 Challenge [53.48285637256203]
iSeg 2019 challenge provides a set of 6-month infant subjects from multiple sites with different protocols/scanners for the participating methods.
By the time of writing, there are 30 automatic segmentation methods participating in iSeg 2019.
We review the 8 top-ranked teams by detailing their pipelines/implementations, presenting experimental results and evaluating performance in terms of the whole brain, regions of interest, and gyral landmark curves.
arXiv Detail & Related papers (2020-07-04T13:39:48Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
Retinopathy of Prematurity (ROP) is an eye disorder primarily affecting premature infants with lower weights.
It causes proliferation of vessels in the retina and could result in vision loss and, eventually, retinal detachment, leading to blindness.
In recent years, there has been a significant effort to automate the diagnosis using deep learning.
This paper builds upon the success of previous models and develops a novel architecture, which combines object segmentation and convolutional neural networks (CNN)
Our proposed system first trains an object segmentation model to identify the demarcation line at a pixel level and adds the resulting mask as an additional "color" channel in
arXiv Detail & Related papers (2020-04-03T14:07:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.