論文の概要: LLM Defenses Are Not Robust to Multi-Turn Human Jailbreaks Yet
- arxiv url: http://arxiv.org/abs/2408.15221v2
- Date: Wed, 4 Sep 2024 00:58:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 19:09:05.369526
- Title: LLM Defenses Are Not Robust to Multi-Turn Human Jailbreaks Yet
- Title(参考訳): LLMの防衛は、人間のジェイルブレイクにはまだ耐えられない
- Authors: Nathaniel Li, Ziwen Han, Ian Steneker, Willow Primack, Riley Goodside, Hugh Zhang, Zifan Wang, Cristina Menghini, Summer Yue,
- Abstract要約: マルチターンヒトジェイルブレイクによって重大な脆弱性が発見され,HarmBenchの攻撃成功率(ASR)は70%を超えた。
我々はこれらの結果を537個のマルチターンジェイルブレイクにまたがる2,912個のプロンプトのデータセットであるMHJ(Multi-Turn Human Jailbreaks)にコンパイルする。
- 参考スコア(独自算出の注目度): 11.83818222565186
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent large language model (LLM) defenses have greatly improved models' ability to refuse harmful queries, even when adversarially attacked. However, LLM defenses are primarily evaluated against automated adversarial attacks in a single turn of conversation, an insufficient threat model for real-world malicious use. We demonstrate that multi-turn human jailbreaks uncover significant vulnerabilities, exceeding 70% attack success rate (ASR) on HarmBench against defenses that report single-digit ASRs with automated single-turn attacks. Human jailbreaks also reveal vulnerabilities in machine unlearning defenses, successfully recovering dual-use biosecurity knowledge from unlearned models. We compile these results into Multi-Turn Human Jailbreaks (MHJ), a dataset of 2,912 prompts across 537 multi-turn jailbreaks. We publicly release MHJ alongside a compendium of jailbreak tactics developed across dozens of commercial red teaming engagements, supporting research towards stronger LLM defenses.
- Abstract(参考訳): 最近の大規模言語モデル(LLM)の防御は、敵が攻撃しても有害なクエリを拒否するモデルの能力を大幅に改善した。
しかし、LLMの防御は、現実世界の悪意のある使用に対して不十分な脅威モデルである1ターンの会話において、自動的な敵攻撃に対して主に評価される。
マルチターンヒトジェイルブレイクが重大な脆弱性を発見でき、HarmBenchの攻撃成功率(ASR)を70%以上越え、単一桁のASRと自動単ターン攻撃を報告している。
人間のジェイルブレイクはまた、未学習の防御の脆弱性を明らかにし、未学習のモデルから二重用途のバイオセキュリティ知識を回復することに成功した。
我々はこれらの結果を537個のマルチターンジェイルブレイクにまたがる2,912個のプロンプトのデータセットであるMHJ(Multi-Turn Human Jailbreaks)にコンパイルする。
我々はMHJを、数十の商業的レッドチームで開発されたジェイルブレイク戦術のコンペレーションと共に公開し、LLM防衛の強化に向けた研究を支援します。
関連論文リスト
- Figure it Out: Analyzing-based Jailbreak Attack on Large Language Models [21.252514293436437]
大規模言語モデル(LLM)に対するジェイルブレイク攻撃に対する分析ベースジェイルブレイク(ABJ)を提案する。
ABJはGPT-4-turbo-0409上で94.8%の攻撃成功率(ASR)と1.06の攻撃効率(AE)を達成する。
論文 参考訳(メタデータ) (2024-07-23T06:14:41Z) - Jailbreak Attacks and Defenses Against Large Language Models: A Survey [22.392989536664288]
大規模言語モデル(LLM)は、様々なテキスト生成タスクにおいて例外的に機能している。
ジェイルブレイク」は、利用方針や社会に対する悪意ある反応をモデルに誘導する。
本稿では,ジェイルブレイク攻撃と防衛方法の包括的かつ詳細な分類法を提案する。
論文 参考訳(メタデータ) (2024-07-05T06:57:30Z) - WildTeaming at Scale: From In-the-Wild Jailbreaks to (Adversarially) Safer Language Models [66.34505141027624]
我々は、WildTeamingを紹介した。これは自動LLM安全リチームフレームワークで、Wild-Chatbotインタラクションをマイニングし、新しいジェイルブレイク戦術の5.7Kのユニークなクラスタを発見する。
WildTeamingは、未確認のフロンティアLSMの脆弱性を明らかにし、最大4.6倍の多様性と敵の攻撃に成功した。
論文 参考訳(メタデータ) (2024-06-26T17:31:22Z) - Tastle: Distract Large Language Models for Automatic Jailbreak Attack [9.137714258654842]
大規模言語モデル(LLM)の自動レッドチーム化のためのブラックボックスジェイルブレイクフレームワークを提案する。
我々のフレームワークは、有効性、スケーラビリティ、転送性において優れている。
また,攻撃に対する既存のジェイルブレイク防御手法の有効性についても検討した。
論文 参考訳(メタデータ) (2024-03-13T11:16:43Z) - Comprehensive Assessment of Jailbreak Attacks Against LLMs [28.58973312098698]
4つのカテゴリから13の最先端ジェイルブレイク法,16の違反カテゴリから160の質問,6つの人気のあるLDMについて検討した。
実験の結果, 最適化されたジェイルブレイクは高い攻撃成功率を確実に達成することが示された。
攻撃性能と効率のトレードオフについて論じるとともに、脱獄プロンプトの転送性は依然として維持可能であることを示す。
論文 参考訳(メタデータ) (2024-02-08T13:42:50Z) - Weak-to-Strong Jailbreaking on Large Language Models [96.50953637783581]
大規模言語モデル(LLM)は、ジェイルブレイク攻撃に対して脆弱である。
既存のジェイルブレイク法は計算コストがかかる。
我々は、弱々しく強固な脱獄攻撃を提案する。
論文 参考訳(メタデータ) (2024-01-30T18:48:37Z) - Defending Large Language Models Against Jailbreaking Attacks Through Goal Prioritization [98.18718484152595]
本研究は,学習段階と推論段階の両方において,目標の優先順位付けを統合することで,支援と安全性の確保という目標との本質的な対立に対処することを提案する。
我々の研究は、脱獄攻撃と防衛の理解に寄与し、LLMの能力と安全性の関係に光を当てている。
論文 参考訳(メタデータ) (2023-11-15T16:42:29Z) - A Wolf in Sheep's Clothing: Generalized Nested Jailbreak Prompts can Fool Large Language Models Easily [51.63085197162279]
大きな言語モデル(LLM)は有用で安全な応答を提供するように設計されている。
ジェイルブレイク」と呼ばれる 敵のプロンプトは 保護を回避できる
有効なジェイルブレイクプロンプトを生成するためにLLM自体を活用する自動フレームワークであるReNeLLMを提案する。
論文 参考訳(メタデータ) (2023-11-14T16:02:16Z) - Jailbreaking Black Box Large Language Models in Twenty Queries [97.29563503097995]
大規模言語モデル(LLM)は、敵のジェイルブレイクに対して脆弱である。
LLMへのブラックボックスアクセスのみのセマンティックジェイルブレイクを生成するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-12T15:38:28Z) - SmoothLLM: Defending Large Language Models Against Jailbreaking Attacks [99.23352758320945]
SmoothLLMは,大規模言語モデル(LLM)に対するジェイルブレーキング攻撃を軽減するために設計された,最初のアルゴリズムである。
敵が生成したプロンプトが文字レベルの変化に対して脆弱であることから、我々の防衛はまず、与えられた入力プロンプトの複数のコピーをランダムに摂動し、対応する予測を集約し、敵の入力を検出する。
論文 参考訳(メタデータ) (2023-10-05T17:01:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。