S4DL: Shift-sensitive Spatial-Spectral Disentangling Learning for Hyperspectral Image Unsupervised Domain Adaptation
- URL: http://arxiv.org/abs/2408.15263v1
- Date: Sun, 11 Aug 2024 15:58:24 GMT
- Title: S4DL: Shift-sensitive Spatial-Spectral Disentangling Learning for Hyperspectral Image Unsupervised Domain Adaptation
- Authors: Jie Feng, Tianshu Zhang, Junpeng Zhang, Ronghua Shang, Weisheng Dong, Guangming Shi, Licheng Jiao,
- Abstract summary: Unsupervised domain adaptation techniques, extensively studied in hyperspectral image (HSI) classification, aim to use labeled source domain data and unlabeled target domain data.
We propose shift-sensitive spatial-spectral disentangling learning (S4DL) approach.
Experiments on several cross-scene HSI datasets consistently verified that S4DL is better than the state-of-the-art UDA methods.
- Score: 73.90209847296839
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised domain adaptation techniques, extensively studied in hyperspectral image (HSI) classification, aim to use labeled source domain data and unlabeled target domain data to learn domain invariant features for cross-scene classification. Compared to natural images, numerous spectral bands of HSIs provide abundant semantic information, but they also increase the domain shift significantly. In most existing methods, both explicit alignment and implicit alignment simply align feature distribution, ignoring domain information in the spectrum. We noted that when the spectral channel between source and target domains is distinguished obviously, the transfer performance of these methods tends to deteriorate. Additionally, their performance fluctuates greatly owing to the varying domain shifts across various datasets. To address these problems, a novel shift-sensitive spatial-spectral disentangling learning (S4DL) approach is proposed. In S4DL, gradient-guided spatial-spectral decomposition is designed to separate domain-specific and domain-invariant representations by generating tailored masks under the guidance of the gradient from domain classification. A shift-sensitive adaptive monitor is defined to adjust the intensity of disentangling according to the magnitude of domain shift. Furthermore, a reversible neural network is constructed to retain domain information that lies in not only in semantic but also the shallow-level detailed information. Extensive experimental results on several cross-scene HSI datasets consistently verified that S4DL is better than the state-of-the-art UDA methods. Our source code will be available at https://github.com/xdu-jjgs/S4DL.
Related papers
- Semi Supervised Heterogeneous Domain Adaptation via Disentanglement and Pseudo-Labelling [4.33404822906643]
Semi-supervised domain adaptation methods leverage information from a source labelled domain to generalize over a scarcely labelled target domain.
Such a setting is denoted as Semi-Supervised Heterogeneous Domain Adaptation (SSHDA)
We introduce SHeDD (Semi-supervised Heterogeneous Domain Adaptation via Disentanglement) an end-to-end neural framework tailored to learning a target domain.
arXiv Detail & Related papers (2024-06-20T08:02:49Z) - Cyclically Disentangled Feature Translation for Face Anti-spoofing [61.70377630461084]
We propose a novel domain adaptation method called cyclically disentangled feature translation network (CDFTN)
CDFTN generates pseudo-labeled samples that possess: 1) source domain-invariant liveness features and 2) target domain-specific content features, which are disentangled through domain adversarial training.
A robust classifier is trained based on the synthetic pseudo-labeled images under the supervision of source domain labels.
arXiv Detail & Related papers (2022-12-07T14:12:34Z) - Multi-Scale Multi-Target Domain Adaptation for Angle Closure
Classification [50.658613573816254]
We propose a novel Multi-scale Multi-target Domain Adversarial Network (M2DAN) for angle closure classification.
Based on these domain-invariant features at different scales, the deep model trained on the source domain is able to classify angle closure on multiple target domains.
arXiv Detail & Related papers (2022-08-25T15:27:55Z) - Improving Transferability of Domain Adaptation Networks Through Domain
Alignment Layers [1.3766148734487902]
Multi-source unsupervised domain adaptation (MSDA) aims at learning a predictor for an unlabeled domain by assigning weak knowledge from a bag of source models.
We propose to embed Multi-Source version of DomaIn Alignment Layers (MS-DIAL) at different levels of the predictor.
Our approach can improve state-of-the-art MSDA methods, yielding relative gains of up to +30.64% on their classification accuracies.
arXiv Detail & Related papers (2021-09-06T18:41:19Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
Unsupervised domain adaptation for object detection is a challenging problem with many real-world applications.
We propose a novel augmented feature alignment network (AFAN) which integrates intermediate domain image generation and domain-adversarial training.
Our approach significantly outperforms the state-of-the-art methods on standard benchmarks for both similar and dissimilar domain adaptations.
arXiv Detail & Related papers (2021-06-10T05:01:20Z) - Domain Adaptation on Semantic Segmentation for Aerial Images [3.946367634483361]
We propose a novel unsupervised domain adaptation framework to address domain shift in semantic image segmentation.
We also apply entropy minimization on the target domain to produce high-confident prediction.
We show improvement over state-of-the-art methods in terms of various metrics.
arXiv Detail & Related papers (2020-12-03T20:58:27Z) - Unsupervised Cross-domain Image Classification by Distance Metric Guided
Feature Alignment [11.74643883335152]
Unsupervised domain adaptation is a promising avenue which transfers knowledge from a source domain to a target domain.
We propose distance metric guided feature alignment (MetFA) to extract discriminative as well as domain-invariant features on both source and target domains.
Our model integrates class distribution alignment to transfer semantic knowledge from a source domain to a target domain.
arXiv Detail & Related papers (2020-08-19T13:36:57Z) - Simultaneous Semantic Alignment Network for Heterogeneous Domain
Adaptation [67.37606333193357]
We propose aSimultaneous Semantic Alignment Network (SSAN) to simultaneously exploit correlations among categories and align the centroids for each category across domains.
By leveraging target pseudo-labels, a robust triplet-centroid alignment mechanism is explicitly applied to align feature representations for each category.
Experiments on various HDA tasks across text-to-image, image-to-image and text-to-text successfully validate the superiority of our SSAN against state-of-the-art HDA methods.
arXiv Detail & Related papers (2020-08-04T16:20:37Z) - Multi-source Domain Adaptation for Visual Sentiment Classification [92.53780541232773]
We propose a novel multi-source domain adaptation (MDA) method, termed Multi-source Sentiment Generative Adversarial Network (MSGAN)
To handle data from multiple source domains, MSGAN learns to find a unified sentiment latent space where data from both the source and target domains share a similar distribution.
Extensive experiments conducted on four benchmark datasets demonstrate that MSGAN significantly outperforms the state-of-the-art MDA approaches for visual sentiment classification.
arXiv Detail & Related papers (2020-01-12T08:37:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.