A Statistical Framework for Data-dependent Retrieval-Augmented Models
- URL: http://arxiv.org/abs/2408.15399v1
- Date: Tue, 27 Aug 2024 20:51:06 GMT
- Title: A Statistical Framework for Data-dependent Retrieval-Augmented Models
- Authors: Soumya Basu, Ankit Singh Rawat, Manzil Zaheer,
- Abstract summary: Modern ML systems increasingly augment input instances with additional relevant information to enhance final prediction.
We study such models with two components: 1) a em retriever to identify the relevant information out of a large corpus via a data-dependent metric; and 2) a em predictor that consumes the input instances along with the retrieved information to make the final predictions.
- Score: 46.781026675083254
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern ML systems increasingly augment input instances with additional relevant information to enhance final prediction. Despite growing interest in such retrieval-augmented models, their fundamental properties and training are not well understood. We propose a statistical framework to study such models with two components: 1) a {\em retriever} to identify the relevant information out of a large corpus via a data-dependent metric; and 2) a {\em predictor} that consumes the input instances along with the retrieved information to make the final predictions. We present a principled method for end-to-end training of both components and draw connections with various training approaches in the literature. Furthermore, we establish excess risk bounds for retrieval-augmented models while delineating the contributions of both retriever and predictor towards the model performance. We validate the utility of our proposed training methods along with the key takeaways from our statistical analysis on open domain question answering task where retrieval augmentation is important.
Related papers
- Ranking and Combining Latent Structured Predictive Scores without Labeled Data [2.5064967708371553]
This paper introduces a novel structured unsupervised ensemble learning model (SUEL)
It exploits the dependency between a set of predictors with continuous predictive scores, rank the predictors without labeled data and combine them to an ensembled score with weights.
The efficacy of the proposed methods is rigorously assessed through both simulation studies and real-world application of risk genes discovery.
arXiv Detail & Related papers (2024-08-14T20:14:42Z) - Data Shapley in One Training Run [88.59484417202454]
Data Shapley provides a principled framework for attributing data's contribution within machine learning contexts.
Existing approaches require re-training models on different data subsets, which is computationally intensive.
This paper introduces In-Run Data Shapley, which addresses these limitations by offering scalable data attribution for a target model of interest.
arXiv Detail & Related papers (2024-06-16T17:09:24Z) - Towards Better Modeling with Missing Data: A Contrastive Learning-based
Visual Analytics Perspective [7.577040836988683]
Missing data can pose a challenge for machine learning (ML) modeling.
Current approaches are categorized into feature imputation and label prediction.
This study proposes a Contrastive Learning framework to model observed data with missing values.
arXiv Detail & Related papers (2023-09-18T13:16:24Z) - Generalization Properties of Retrieval-based Models [50.35325326050263]
Retrieval-based machine learning methods have enjoyed success on a wide range of problems.
Despite growing literature showcasing the promise of these models, the theoretical underpinning for such models remains underexplored.
We present a formal treatment of retrieval-based models to characterize their generalization ability.
arXiv Detail & Related papers (2022-10-06T00:33:01Z) - Measuring Causal Effects of Data Statistics on Language Model's
`Factual' Predictions [59.284907093349425]
Large amounts of training data are one of the major reasons for the high performance of state-of-the-art NLP models.
We provide a language for describing how training data influences predictions, through a causal framework.
Our framework bypasses the need to retrain expensive models and allows us to estimate causal effects based on observational data alone.
arXiv Detail & Related papers (2022-07-28T17:36:24Z) - A Visual Analytics Approach to Building Logistic Regression Models and
its Application to Health Records [0.0]
We present an open unified approach for generating, evaluating, and applying regression models in high-dimensional data sets.
The approach is based on exposing a broad correlation panorama for attributes, by which the user can select relevant attributes to build and evaluate prediction models.
We demonstrate effectiveness and efficiency of UCReg through the application of our framework to the analysis of Covid-19 and other synthetic and real health records data.
arXiv Detail & Related papers (2022-01-20T19:53:41Z) - Deep Learning with Multiple Data Set: A Weighted Goal Programming
Approach [2.7393821783237184]
Large-scale data analysis is growing at an exponential rate as data proliferates in our societies.
Deep Learning models require plenty of resources, and distributed training is needed.
This paper presents a Multicriteria approach for distributed learning.
arXiv Detail & Related papers (2021-11-27T07:10:25Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
We propose a new learning paradigm with graph representation and learning.
Our framework contains two modules: 1) a backbone network (e.g., feedforward neural nets) as a lower model takes features as input and outputs predicted labels; 2) a graph neural network as an upper model learns to extrapolate embeddings for new features via message passing over a feature-data graph built from observed data.
arXiv Detail & Related papers (2021-10-09T09:02:45Z) - Test-time Collective Prediction [73.74982509510961]
Multiple parties in machine learning want to jointly make predictions on future test points.
Agents wish to benefit from the collective expertise of the full set of agents, but may not be willing to release their data or model parameters.
We explore a decentralized mechanism to make collective predictions at test time, leveraging each agent's pre-trained model.
arXiv Detail & Related papers (2021-06-22T18:29:58Z) - Adaptive Discrete Smoothing for High-Dimensional and Nonlinear Panel
Data [4.550919471480445]
We develop a data-driven smoothing technique for high-dimensional and non-linear panel data models.
The weights are determined by a data-driven way and depend on the similarity between the corresponding functions.
We conduct a simulation study which shows that the prediction can be greatly improved by using our estimator.
arXiv Detail & Related papers (2019-12-30T09:50:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.