A physics-encoded Fourier neural operator approach for surrogate modeling of divergence-free stress fields in solids
- URL: http://arxiv.org/abs/2408.15408v2
- Date: Tue, 04 Feb 2025 20:33:01 GMT
- Title: A physics-encoded Fourier neural operator approach for surrogate modeling of divergence-free stress fields in solids
- Authors: Mohammad S. Khorrami, Pawan Goyal, Jaber R. Mianroodi, Bob Svendsen, Peter Benner, Dierk Raabe,
- Abstract summary: A so-called physics-encoded Fourier neural operator (PeFNO) is developed for surrogate modeling of the quasi-static equilibrium stress field in solids.<n>Stress field data for training are obtained from the numerical solution of a corresponding boundary-value problem for quasi-static mechanical equilibrium.<n>The output of the trained PeFNO is significantly more accurate in satisfying mechanical equilibrium than the output of either the trained PgFNO or the trained PiFNO.
- Score: 6.877349053520825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The purpose of the current work is the development of a so-called physics-encoded Fourier neural operator (PeFNO) for surrogate modeling of the quasi-static equilibrium stress field in solids. Rather than accounting for constraints from physics in the loss function as done in the (now standard) physics-informed approach, the physics-encoded approach incorporates or "encodes" such constraints directly into the network or operator architecture. As a result, in contrast to the physics-informed approach in which only training is physically constrained, both training and output are physically constrained in the physics-encoded approach. For the current constraint of divergence-free stress, a novel encoding approach based on a stress potential is proposed. As a "proof-of-concept" example application of the proposed PeFNO, a heterogeneous polycrystalline material consisting of isotropic elastic grains subject to uniaxial extension is considered. Stress field data for training are obtained from the numerical solution of a corresponding boundary-value problem for quasi-static mechanical equilibrium. This data is also employed to train an analogous physics-guided FNO (PgFNO) and physics-informed FNO (PiFNO) for comparison. As confirmed by this comparison and as expected on the basis of their differences, the output of the trained PeFNO is significantly more accurate in satisfying mechanical equilibrium than the output of either the trained PgFNO or the trained PiFNO.
Related papers
- EquiNO: A Physics-Informed Neural Operator for Multiscale Simulations [0.8345452787121658]
We propose EquiNO as a $textitcomplementary$ physics-informed PDE surrogate for predicting microscale physics.
Our framework, applicable to the so-called multiscale FE$,2,$ computations, introduces the FE-OL approach by integrating the finite element (FE) method with operator learning (OL)
arXiv Detail & Related papers (2025-03-27T08:42:13Z) - DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [60.58067866537143]
We introduce DimOL (Dimension-aware Operator Learning), drawing insights from dimensional analysis.
To implement DimOL, we propose the ProdLayer, which can be seamlessly integrated into FNO-based and Transformer-based PDE solvers.
Empirically, DimOL models achieve up to 48% performance gain within the PDE datasets.
arXiv Detail & Related papers (2024-10-08T10:48:50Z) - Solving Differential Equations using Physics-Informed Deep Equilibrium Models [4.237218036051422]
This paper introduces Physics-Informed Deep Equilibrium Models (PIDEQs) for solving initial value problems (IVPs) of ordinary differential equations (ODEs)
By bridging deep learning and physics-based modeling, this work advances computational techniques for solving IVPs, with implications for scientific computing and engineering applications.
arXiv Detail & Related papers (2024-06-05T17:25:29Z) - DPA-WNO: A gray box model for a class of stochastic mechanics problem [1.0878040851638]
We propose a novel Differentiable Physics Augmented Wavelet Neural Operator (DPA-WNO)
The proposed DPA-WNO blends a differentiable physics solver with the Wavelet Neural Operator (WNO), where the role of WNO is to model the missing physics.
This empowers the proposed framework to exploit the capability of WNO to learn from data while retaining the interpretability and generalizability associated with physics-based solvers.
arXiv Detail & Related papers (2023-09-24T11:15:06Z) - Spherical Fourier Neural Operators: Learning Stable Dynamics on the
Sphere [53.63505583883769]
We introduce Spherical FNOs (SFNOs) for learning operators on spherical geometries.
SFNOs have important implications for machine learning-based simulation of climate dynamics.
arXiv Detail & Related papers (2023-06-06T16:27:17Z) - Machine learning in and out of equilibrium [58.88325379746631]
Our study uses a Fokker-Planck approach, adapted from statistical physics, to explore these parallels.
We focus in particular on the stationary state of the system in the long-time limit, which in conventional SGD is out of equilibrium.
We propose a new variation of Langevin dynamics (SGLD) that harnesses without replacement minibatching.
arXiv Detail & Related papers (2023-06-06T09:12:49Z) - Domain Agnostic Fourier Neural Operators [15.29112632863168]
We introduce domain agnostic Fourier neural operator (DAFNO) for learning surrogates with irregular geometries and evolving domains.
The key idea is to incorporate a smoothed characteristic function in the integral layer architecture of FNOs.
DAFNO has achieved state-of-the-art accuracy as compared to baseline neural operator models.
arXiv Detail & Related papers (2023-04-30T13:29:06Z) - Forecasting subcritical cylinder wakes with Fourier Neural Operators [58.68996255635669]
We apply a state-of-the-art operator learning technique to forecast the temporal evolution of experimentally measured velocity fields.
We find that FNOs are capable of accurately predicting the evolution of experimental velocity fields throughout the range of Reynolds numbers tested.
arXiv Detail & Related papers (2023-01-19T20:04:36Z) - Fourier Continuation for Exact Derivative Computation in
Physics-Informed Neural Operators [53.087564562565774]
PINO is a machine learning architecture that has shown promising empirical results for learning partial differential equations.
We present an architecture that leverages Fourier continuation (FC) to apply the exact gradient method to PINO for nonperiodic problems.
arXiv Detail & Related papers (2022-11-29T06:37:54Z) - Bounding The Rademacher Complexity of Fourier Neural Operator [3.4960814625958787]
A Fourier neural operator (FNO) is one of the physics-inspired machine learning methods.
In this study, we investigated the bounding of the Rademacher complexity of the FNO based on specific group norms.
In addition, we investigated the correlation between the empirical generalization error and the proposed capacity of FNO.
arXiv Detail & Related papers (2022-09-12T11:11:43Z) - Fourier Neural Operator with Learned Deformations for PDEs on General Geometries [75.91055304134258]
We propose a new framework, viz., geo-FNO, to solve PDEs on arbitrary geometries.
Geo-FNO learns to deform the input (physical) domain, which may be irregular, into a latent space with a uniform grid.
We consider a variety of PDEs such as the Elasticity, Plasticity, Euler's, and Navier-Stokes equations, and both forward modeling and inverse design problems.
arXiv Detail & Related papers (2022-07-11T21:55:47Z) - Physical Activation Functions (PAFs): An Approach for More Efficient
Induction of Physics into Physics-Informed Neural Networks (PINNs) [0.0]
Physical Activation Functions (PAFs) help to generate Physics-Informed Neural Networks (PINNs) with less complexity and much more validity for longer ranges of prediction.
PAFs can be inspired by any mathematical formula related to the investigating phenomena such as the initial or boundary conditions of the PDE system.
It is concluded that using the PAFs helps in generating PINNs with less complexity and much more validity for longer ranges of prediction.
arXiv Detail & Related papers (2022-05-29T11:26:46Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
We present a physics-informed framework for solving time-dependent partial differential equations.
Our model utilizes discrete cosine transforms to encode spatial and recurrent neural networks.
We show experimental results on the Taylor-Green vortex solution to the Navier-Stokes equations.
arXiv Detail & Related papers (2022-02-24T20:46:52Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
We develop a novel approach that can significantly accelerate the training of Physics-Informed Neural Networks.
In particular, we parameterize the PDE solution by the Gaussian smoothed model and show that, derived from Stein's Identity, the second-order derivatives can be efficiently calculated without back-propagation.
Experimental results show that our proposed method can achieve competitive error compared to standard PINN training but is two orders of magnitude faster.
arXiv Detail & Related papers (2022-02-18T18:07:54Z) - Physics-informed neural networks for modeling rate- and
temperature-dependent plasticity [3.1861308132183384]
This work presents a physics-informed neural network based framework to model the strain-rate and temperature dependence of the deformation fields in elastic-viscoplastic solids.
arXiv Detail & Related papers (2022-01-20T18:49:27Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINO is the first hybrid approach incorporating data and PDE constraints at different resolutions to learn the operator.
The resulting PINO model can accurately approximate the ground-truth solution operator for many popular PDE families.
arXiv Detail & Related papers (2021-11-06T03:41:34Z) - Robust Learning of Physics Informed Neural Networks [2.86989372262348]
Physics-informed Neural Networks (PINNs) have been shown to be effective in solving partial differential equations.
This paper shows that a PINN can be sensitive to errors in training data and overfit itself in dynamically propagating these errors over the domain of the solution of the PDE.
arXiv Detail & Related papers (2021-10-26T00:10:57Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
Recently, physics informed neural networks have successfully been applied to a broad variety of problems in applied mathematics and engineering.
Due to the global approximation, physics informed neural networks have difficulties in displaying localized effects and strong non-linear solutions by optimization.
It is shown, that the domain decomposition approach is able to accurately resolve nonlinear stress, displacement and energy fields in heterogeneous microstructures obtained from real-world $mu$CT-scans.
arXiv Detail & Related papers (2021-10-14T14:05:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.