論文の概要: Building One-class Detector for Anything: Open-vocabulary Zero-shot OOD
Detection Using Text-image Models
- arxiv url: http://arxiv.org/abs/2305.17207v1
- Date: Fri, 26 May 2023 18:58:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-30 21:23:06.866072
- Title: Building One-class Detector for Anything: Open-vocabulary Zero-shot OOD
Detection Using Text-image Models
- Title(参考訳): one-class detector for anything: テキスト画像モデルを用いたオープンボカブラリーゼロショットood検出
- Authors: Yunhao Ge, Jie Ren, Jiaping Zhao, Kaifeng Chen, Andrew Gallagher,
Laurent Itti, Balaji Lakshminarayanan
- Abstract要約: ゼロショット方式でテキスト画像事前学習モデルを利用する新しい1クラスオープンセットOOD検出器を提案する。
提案手法は,ドメイン内でないものを検出し,多様なOODを検出する柔軟性を提供する。
本手法は,すべてのベンチマークにおいて,従来の手法よりも優れた性能を示す。
- 参考スコア(独自算出の注目度): 23.302018871162186
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We focus on the challenge of out-of-distribution (OOD) detection in deep
learning models, a crucial aspect in ensuring reliability. Despite considerable
effort, the problem remains significantly challenging in deep learning models
due to their propensity to output over-confident predictions for OOD inputs. We
propose a novel one-class open-set OOD detector that leverages text-image
pre-trained models in a zero-shot fashion and incorporates various descriptions
of in-domain and OOD. Our approach is designed to detect anything not in-domain
and offers the flexibility to detect a wide variety of OOD, defined via fine-
or coarse-grained labels, or even in natural language. We evaluate our approach
on challenging benchmarks including large-scale datasets containing
fine-grained, semantically similar classes, distributionally shifted images,
and multi-object images containing a mixture of in-domain and OOD objects. Our
method shows superior performance over previous methods on all benchmarks. Code
is available at https://github.com/gyhandy/One-Class-Anything
- Abstract(参考訳): 信頼性を確保する上で重要な側面である深層学習モデルにおけるod(out-of-distribution)検出の課題に注目した。
かなりの努力にもかかわらず、OOD入力の過信予測を出力する傾向にあるため、ディープラーニングモデルでは大きな問題が残る。
ゼロショット方式でテキストイメージ事前学習モデルを活用し,ドメイン内およびOODの様々な記述を取り入れた新しい一クラスオープンセットOOD検出器を提案する。
提案手法は,ドメイン内にないものを検知し,粒度の粗いラベル,あるいは自然言語で定義した多種多様なOODを検出する柔軟性を提供する。
我々は,細粒度でセマンティックに類似したクラスを含む大規模データセット,分布にシフトした画像,ドメイン内とOODオブジェクトの混合を含むマルチオブジェクト画像を含む,挑戦的なベンチマークに対するアプローチを評価する。
本手法は,すべてのベンチマークにおいて従来の手法よりも優れた性能を示す。
コードはhttps://github.com/gyhandy/One-Class-Anythingで入手できる。
関連論文リスト
- TagOOD: A Novel Approach to Out-of-Distribution Detection via Vision-Language Representations and Class Center Learning [26.446233594630087]
視覚言語表現を用いたOOD検出のための新しいアプローチである textbfTagOOD を提案する。
TagOODは、抽出されたオブジェクトの特徴に基づいて軽量なネットワークをトレーニングし、代表的なクラスセンターを学習する。
これらの中心は、OOD検出における無関係な画像特徴の影響を最小限に抑え、INDオブジェクトクラスの中心的な傾向を捉えている。
論文 参考訳(メタデータ) (2024-08-28T06:37:59Z) - Envisioning Outlier Exposure by Large Language Models for Out-of-Distribution Detection [71.93411099797308]
オープンワールドシナリオに機械学習モデルをデプロイする場合、アウト・オブ・ディストリビューション(OOD)サンプルは不可欠である。
本稿では,大規模言語モデル(LLM)の専門知識と推論能力を活用して,この制約に対処することを提案する。
EOEは、遠、近、きめ細かいOOD検出など、さまざまなタスクに一般化することができる。
EOEは様々なOODタスクで最先端のパフォーマンスを実現し、ImageNet-1Kデータセットに効果的にスケールできる。
論文 参考訳(メタデータ) (2024-06-02T17:09:48Z) - A noisy elephant in the room: Is your out-of-distribution detector robust to label noise? [49.88894124047644]
我々は、最先端のOOD検出方法20について詳しく検討する。
不正に分類されたIDサンプルとOODサンプルの分離が不十分であることを示す。
論文 参考訳(メタデータ) (2024-04-02T09:40:22Z) - Negative Label Guided OOD Detection with Pretrained Vision-Language Models [96.67087734472912]
Out-of-distriion (OOD) は未知のクラスからサンプルを識別することを目的としている。
我々は,大規模なコーパスデータベースから大量の負のラベルを抽出する,NegLabelと呼ばれる新しいポストホックOOD検出手法を提案する。
論文 参考訳(メタデータ) (2024-03-29T09:19:52Z) - Out-of-Distribution Detection Using Peer-Class Generated by Large Language Model [0.0]
アウト・オブ・ディストリビューション(OOD)検出は、マシンラーニングモデルの信頼性とセキュリティを確保するための重要なタスクである。
本稿では,ODPCと呼ばれる新しい手法を提案し,大規模言語モデルを用いてOODピア・セマンティクスのクラスを生成する。
5つのベンチマークデータセットの実験により,提案手法は最先端の結果が得られることが示された。
論文 参考訳(メタデータ) (2024-03-20T06:04:05Z) - EAT: Towards Long-Tailed Out-of-Distribution Detection [55.380390767978554]
本稿では,長い尾を持つOOD検出の課題に対処する。
主な困難は、尾クラスに属するサンプルとOODデータを区別することである。
本稿では,(1)複数の禁制クラスを導入して分布内クラス空間を拡大すること,(2)コンテキストリッチなOODデータに画像をオーバーレイすることでコンテキスト限定のテールクラスを拡大すること,の2つの簡単な考え方を提案する。
論文 参考訳(メタデータ) (2023-12-14T13:47:13Z) - Exploring Large Language Models for Multi-Modal Out-of-Distribution
Detection [67.68030805755679]
大きな言語モデル(LLM)は豊富な世界の知識をエンコードし、クラスごとに記述的な特徴を生成するよう促すことができる。
本稿では,LLMの選択的生成によるOOD検出性能向上のための世界知識の適用を提案する。
論文 参考訳(メタデータ) (2023-10-12T04:14:28Z) - Unleashing Mask: Explore the Intrinsic Out-of-Distribution Detection
Capability [70.72426887518517]
Out-of-Distribution(OOD)検出は、機械学習モデルを現実世界のアプリケーションにデプロイする際に、セキュアAIの必須の側面である。
本稿では,IDデータを用いた学習モデルのOOD識別能力を復元する新しい手法であるUnleashing Maskを提案する。
本手法では, マスクを用いて記憶した非定型サンプルを抽出し, モデルを微調整するか, 導入したマスクでプルーする。
論文 参考訳(メタデータ) (2023-06-06T14:23:34Z) - Improving Out-of-Distribution Detection with Disentangled Foreground and Background Features [23.266183020469065]
本稿では,IDトレーニングサンプルから前景と背景の特徴を密接な予測手法によって切り離す新しいフレームワークを提案する。
これは、様々な既存のOOD検出メソッドとシームレスに組み合わせられる汎用フレームワークである。
論文 参考訳(メタデータ) (2023-03-15T16:12:14Z) - A Simple Test-Time Method for Out-of-Distribution Detection [45.11199798139358]
本稿では,OOD検出のための簡易なテスト時間線形訓練法を提案する。
分布外である入力画像の確率は、ニューラルネットワークが抽出した特徴と驚くほど線形に相関していることがわかった。
本稿では,提案手法のオンライン版を提案し,実世界のアプリケーションでより実用的な性能を実現する。
論文 参考訳(メタデータ) (2022-07-17T16:02:58Z) - OODformer: Out-Of-Distribution Detection Transformer [15.17006322500865]
現実世界の安全クリティカルなアプリケーションでは、新しいデータポイントがOODであるかどうかを認識することが重要です。
本稿では,OODformer というファースト・オブ・ザ・キンドな OOD 検出アーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-07-19T15:46:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。