Advanced POD-Based Performance Evaluation of Classifiers Applied to Human Driver Lane Changing Prediction
- URL: http://arxiv.org/abs/2408.15722v1
- Date: Wed, 28 Aug 2024 11:39:24 GMT
- Title: Advanced POD-Based Performance Evaluation of Classifiers Applied to Human Driver Lane Changing Prediction
- Authors: Zahra Rastin, Dirk Söffker,
- Abstract summary: This paper uses a modified probability of detection approach to assess the reliability of machine learning algorithms.
It provides an averaging conservative behavior with the advantage of enhancing the reliability of the hit/miss approach to POD.
- Score: 2.8084422332394428
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Machine learning (ML) classifiers serve as essential tools facilitating classification and prediction across various domains. The performance of these algorithms should be known to ensure their reliable application. In certain fields, receiver operating characteristic and precision-recall curves are frequently employed to assess machine learning algorithms without accounting for the impact of process parameters. However, it may be essential to evaluate the performance of these algorithms in relation to such parameters. As a performance evaluation metric capable of considering the effects of process parameters, this paper uses a modified probability of detection (POD) approach to assess the reliability of ML-based algorithms. As an example, the POD-based approach is employed to assess ML models used for predicting the lane changing behavior of a vehicle driver. The time remaining to the predicted (and therefore unknown) lane changing event is considered as process parameter. The hit/miss approach to POD is taken here and modified by considering the probability of lane changing derived from ML algorithms at each time step, and obtaining the final result of the analysis accordingly. This improves the reliability of results compared to the standard hit/miss approach, which considers the outcome of the classifiers as either 0 or 1, while also simplifying evaluation compared to the \^a versus a approach. Performance evaluation results of the proposed approach are compared with those obtained with the standard hit/miss approach and a pre-developed \^a versus a approach to validate the effectiveness of the proposed method. The comparison shows that this method provides an averaging conservative behavior with the advantage of enhancing the reliability of the hit/miss approach to POD while retaining its simplicity.
Related papers
- Stratified Prediction-Powered Inference for Hybrid Language Model Evaluation [62.2436697657307]
Prediction-powered inference (PPI) is a method that improves statistical estimates based on limited human-labeled data.
We propose a method called Stratified Prediction-Powered Inference (StratPPI)
We show that the basic PPI estimates can be considerably improved by employing simple data stratification strategies.
arXiv Detail & Related papers (2024-06-06T17:37:39Z) - A Semiparametric Instrumented Difference-in-Differences Approach to
Policy Learning [2.1989182578668243]
We propose a general instrumented difference-in-differences (DiD) approach for learning the optimal treatment policy.
Specifically, we establish identification results using a binary instrumental variable (IV) when the parallel trends assumption fails to hold.
We also construct a Wald estimator, novel inverse probability estimators, and a class of semi efficient and multiply robust estimators.
arXiv Detail & Related papers (2023-10-14T09:38:32Z) - Consensus-Adaptive RANSAC [104.87576373187426]
We propose a new RANSAC framework that learns to explore the parameter space by considering the residuals seen so far via a novel attention layer.
The attention mechanism operates on a batch of point-to-model residuals, and updates a per-point estimation state to take into account the consensus found through a lightweight one-step transformer.
arXiv Detail & Related papers (2023-07-26T08:25:46Z) - Provably Efficient Bayesian Optimization with Unknown Gaussian Process Hyperparameter Estimation [44.53678257757108]
We propose a new BO method that can sub-linearly converge to the objective function's global optimum.
Our method uses a multi-armed bandit technique (EXP3) to add random data points to the BO process.
We demonstrate empirically that our method outperforms existing approaches on various synthetic and real-world problems.
arXiv Detail & Related papers (2023-06-12T03:35:45Z) - Predictive change point detection for heterogeneous data [1.1720726814454114]
"Predict and Compare" is a change point detection framework assisted by a predictive machine learning model.
It outperforms online CPD routines in terms of false positive rate and out-of-control average run length.
The power of the method is demonstrated in a tribological case study.
arXiv Detail & Related papers (2023-05-11T07:59:18Z) - Variational Linearized Laplace Approximation for Bayesian Deep Learning [11.22428369342346]
We propose a new method for approximating Linearized Laplace Approximation (LLA) using a variational sparse Gaussian Process (GP)
Our method is based on the dual RKHS formulation of GPs and retains, as the predictive mean, the output of the original DNN.
It allows for efficient optimization, which results in sub-linear training time in the size of the training dataset.
arXiv Detail & Related papers (2023-02-24T10:32:30Z) - Partial Identification with Noisy Covariates: A Robust Optimization
Approach [94.10051154390237]
Causal inference from observational datasets often relies on measuring and adjusting for covariates.
We show that this robust optimization approach can extend a wide range of causal adjustment methods to perform partial identification.
Across synthetic and real datasets, we find that this approach provides ATE bounds with a higher coverage probability than existing methods.
arXiv Detail & Related papers (2022-02-22T04:24:26Z) - Scalable Cross Validation Losses for Gaussian Process Models [22.204619587725208]
We use Polya-Gamma auxiliary variables and variational inference to accommodate binary and multi-class classification.
We find that our method offers fast training and excellent predictive performance.
arXiv Detail & Related papers (2021-05-24T21:01:47Z) - Scalable Personalised Item Ranking through Parametric Density Estimation [53.44830012414444]
Learning from implicit feedback is challenging because of the difficult nature of the one-class problem.
Most conventional methods use a pairwise ranking approach and negative samplers to cope with the one-class problem.
We propose a learning-to-rank approach, which achieves convergence speed comparable to the pointwise counterpart.
arXiv Detail & Related papers (2021-05-11T03:38:16Z) - Variance Penalized On-Policy and Off-Policy Actor-Critic [60.06593931848165]
We propose on-policy and off-policy actor-critic algorithms that optimize a performance criterion involving both mean and variance in the return.
Our approach not only performs on par with actor-critic and prior variance-penalization baselines in terms of expected return, but also generates trajectories which have lower variance in the return.
arXiv Detail & Related papers (2021-02-03T10:06:16Z) - Efficient Policy Learning from Surrogate-Loss Classification Reductions [65.91730154730905]
We consider the estimation problem given by a weighted surrogate-loss classification reduction of policy learning.
We show that, under a correct specification assumption, the weighted classification formulation need not be efficient for policy parameters.
We propose an estimation approach based on generalized method of moments, which is efficient for the policy parameters.
arXiv Detail & Related papers (2020-02-12T18:54:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.