論文の概要: Benchmarking foundation models as feature extractors for weakly-supervised computational pathology
- arxiv url: http://arxiv.org/abs/2408.15823v2
- Date: Sun, 08 Dec 2024 23:59:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:47:59.822903
- Title: Benchmarking foundation models as feature extractors for weakly-supervised computational pathology
- Title(参考訳): 弱教師付き計算病理のための特徴抽出器としての基礎モデルのベンチマーク
- Authors: Peter Neidlinger, Omar S. M. El Nahhas, Hannah Sophie Muti, Tim Lenz, Michael Hoffmeister, Hermann Brenner, Marko van Treeck, Rupert Langer, Bastian Dislich, Hans Michael Behrens, Christoph Röcken, Sebastian Foersch, Daniel Truhn, Antonio Marra, Oliver Lester Saldanha, Jakob Nikolas Kather,
- Abstract要約: 肺, 大腸癌, 胃癌, 乳癌13例の病理組織学的基盤モデルを用いて, 6,818例, 9,528例の病理組織学的検討を行った。
視覚言語基礎モデルであるCONCHは、視覚のみの基礎モデルと比較して最高性能を示し、Virchow2は第2位である。
- 参考スコア(独自算出の注目度): 0.6151041580858937
- License:
- Abstract: Advancements in artificial intelligence have driven the development of numerous pathology foundation models capable of extracting clinically relevant information. However, there is currently limited literature independently evaluating these foundation models on truly external cohorts and clinically-relevant tasks to uncover adjustments for future improvements. In this study, we benchmarked 19 histopathology foundation models on 13 patient cohorts with 6,818 patients and 9,528 slides from lung, colorectal, gastric, and breast cancers. The models were evaluated on weakly-supervised tasks related to biomarkers, morphological properties, and prognostic outcomes. We show that a vision-language foundation model, CONCH, yielded the highest performance when compared to vision-only foundation models, with Virchow2 as close second. The experiments reveal that foundation models trained on distinct cohorts learn complementary features to predict the same label, and can be fused to outperform the current state of the art. An ensemble combining CONCH and Virchow2 predictions outperformed individual models in 55% of tasks, leveraging their complementary strengths in classification scenarios. Moreover, our findings suggest that data diversity outweighs data volume for foundation models. Our work highlights actionable adjustments to improve pathology foundation models.
- Abstract(参考訳): 人工知能の進歩は、臨床関連情報を抽出できる多くの病理基盤モデルの開発を推進してきた。
しかし、現在、これらの基礎モデルを真の外部コホートと臨床関連課題に基づいて独立して評価する文献が限られており、今後の改善に向けた調整が明らかにされている。
本研究は, 肺, 大腸癌, 胃癌, 乳癌13例の病理組織学的基盤モデルを用いて, 肺, 大腸癌, 胃癌, 乳癌の6,818例, 9,528例について比較検討した。
これらのモデルは, バイオマーカー, 形態学的特性, 予後に関する弱い教師付きタスクに基づいて評価した。
視覚言語基礎モデルであるCONCHは、視覚のみの基礎モデルと比較して最高性能を示し、Virchow2は第2位である。
実験の結果、異なるコホートで訓練された基礎モデルは、同じラベルを予測するために相補的な特徴を学習し、現在の最先端よりも優れていることが判明した。
CONCHとVirchhow2の予測を組み合わせたアンサンブルは、個々のモデルを55%のタスクで上回り、分類シナリオにおける補完的な強みを活用している。
さらに, 基礎モデルでは, データの多様性がデータ量を上回ることが示唆された。
我々の研究は、病理基盤モデルを改善するための実行可能な調整に焦点を当てている。
関連論文リスト
- Exploring Foundation Models Fine-Tuning for Cytology Classification [0.10555513406636088]
既存の基盤モデルが細胞学的分類にどのように適用できるかを示す。
4つの細胞分類データセットにまたがる5つの基盤モデルを評価する。
以上の結果から,LoRAによる事前学習したバックボーンの微調整により,モデル性能が大幅に向上することが示唆された。
論文 参考訳(メタデータ) (2024-11-22T14:34:04Z) - How Good Are We? Evaluating Cell AI Foundation Models in Kidney Pathology with Human-in-the-Loop Enrichment [11.60167559546617]
AI基盤モデルのトレーニングは、現実の医療課題に対処するための、有望な大規模学習アプローチとして登場した。
これらのモデルの多くは、疾患の診断や組織定量化などのタスクのために開発されたが、単一の臓器内の核分割のような最も単純なタスクに展開するための準備が整っていないことは確かである。
本稿では、最近の細胞基盤モデルの性能をキュレートされたデータセット上で徹底的に評価することにより、この重要な疑問である「我々はどのくらい良いのか?」に答えようとしている。
論文 参考訳(メタデータ) (2024-10-31T17:00:33Z) - Benchmarking Pathology Foundation Models: Adaptation Strategies and Scenarios [2.1953732467962324]
14のデータセットと2つのシナリオ整合性評価と柔軟性評価の4つの病理特異的基盤モデルをベンチマークする。
その結果、パラメータ効率のよい微調整手法は、同じ下流タスク内の多様なデータセットに病理学固有の基礎モデルを適用するのに効率的かつ効果的であることが判明した。
論文 参考訳(メタデータ) (2024-10-21T14:10:18Z) - GenBench: A Benchmarking Suite for Systematic Evaluation of Genomic Foundation Models [56.63218531256961]
我々はGenomic Foundation Modelsの有効性を評価するためのベンチマークスイートであるGenBenchを紹介する。
GenBenchはモジュラーで拡張可能なフレームワークを提供し、様々な最先端の方法論をカプセル化している。
本稿では,タスク固有性能におけるモデルアーキテクチャとデータセット特性の相互作用のニュアンス解析を行う。
論文 参考訳(メタデータ) (2024-06-01T08:01:05Z) - A Comprehensive Evaluation of Histopathology Foundation Models for Ovarian Cancer Subtype Classification [1.9499122087408571]
病理組織学の基礎モデルは、多くのタスクにまたがる大きな約束を示している。
これまでで最も厳格な単一タスクによる病理組織学的基盤モデルの検証を報告した。
病理組織学的基盤モデルは卵巣がんの亜型化に明確な利益をもたらす。
論文 参考訳(メタデータ) (2024-05-16T11:21:02Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
近年のゲノムワイド・アソシエーション(GWAS)研究は、複雑な形質の遺伝的基盤を明らかにしているが、非ヨーロッパ系個体の低発現を示している。
そこで本研究では,マルチオミクスデータを用いて,多様な祖先間での疾患予測を改善することができるかを評価する。
論文 参考訳(メタデータ) (2024-04-26T16:39:50Z) - Causal Inference via Nonlinear Variable Decorrelation for Healthcare
Applications [60.26261850082012]
線形および非線形共振の両方を扱う可変デコリレーション正規化器を用いた新しい手法を提案する。
我々は、モデル解釈可能性を高めるために、元の特徴に基づくアソシエーションルールマイニングを用いた新しい表現として、アソシエーションルールを採用する。
論文 参考訳(メタデータ) (2022-09-29T17:44:14Z) - Monte Carlo dropout increases model repeatability [2.725799462492061]
同一患者の画像における4種類のモデルの再現性について検討した。
本稿では,3つの医療画像解析課題における2値,多値,順序,回帰モデルの性能について検討する。
論文 参考訳(メタデータ) (2021-11-12T15:03:20Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
このフレームワークには、飲み込みレベルにおけるディープラーニングモデルと、学習レベルにおける機能ベースの機械学習モデルが含まれている。
これは、生のマルチスワローデータからHRM研究のCC診断を自動的に予測する最初の人工知能モデルである。
論文 参考訳(メタデータ) (2021-06-25T20:09:23Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
ドメイン適応を容易にするデータ拡張手法を提案する。
逆生成したサンプルはドメイン適応時に使用される。
その結果,本手法の有効性とタスクの一般性が確認された。
論文 参考訳(メタデータ) (2021-01-13T03:20:20Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
現在の自己エンコーダに基づく非絡み合い表現学習法は、(集合体)後部をペナルティ化し、潜伏因子の統計的独立を促進することで、非絡み合いを実現する。
本稿では,不整合因子をペナルティに基づく不整合表現学習法を用いて学習する,新しい多段階モデリング手法を提案する。
次に、低品質な再構成を、欠落した関連潜伏変数をモデル化するために訓練された別の深層生成モデルで改善する。
論文 参考訳(メタデータ) (2020-10-25T18:51:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。