A Novel Tracking Framework for Devices in X-ray Leveraging Supplementary Cue-Driven Self-Supervised Features
- URL: http://arxiv.org/abs/2501.12958v1
- Date: Wed, 22 Jan 2025 15:32:07 GMT
- Title: A Novel Tracking Framework for Devices in X-ray Leveraging Supplementary Cue-Driven Self-Supervised Features
- Authors: Saahil Islam, Venkatesh N. Murthy, Dominik Neumann, Serkan Cimen, Puneet Sharma, Andreas Maier, Dorin Comaniciu, Florin C. Ghesu,
- Abstract summary: We propose a self-supervised learning approach that enhances its-temporal visibility.
We introduce a generic real-time tracking framework that effectively leverages the pretrained-temporal network.
Our method achieves an 87% reduction in max error for balloon marker detection and a 61% reduction in max error for catheter tip detection.
- Score: 6.262161803642583
- License:
- Abstract: To restore proper blood flow in blocked coronary arteries via angioplasty procedure, accurate placement of devices such as catheters, balloons, and stents under live fluoroscopy or diagnostic angiography is crucial. Identified balloon markers help in enhancing stent visibility in X-ray sequences, while the catheter tip aids in precise navigation and co-registering vessel structures, reducing the need for contrast in angiography. However, accurate detection of these devices in interventional X-ray sequences faces significant challenges, particularly due to occlusions from contrasted vessels and other devices and distractions from surrounding, resulting in the failure to track such small objects. While most tracking methods rely on spatial correlation of past and current appearance, they often lack strong motion comprehension essential for navigating through these challenging conditions, and fail to effectively detect multiple instances in the scene. To overcome these limitations, we propose a self-supervised learning approach that enhances its spatio-temporal understanding by incorporating supplementary cues and learning across multiple representation spaces on a large dataset. Followed by that, we introduce a generic real-time tracking framework that effectively leverages the pretrained spatio-temporal network and also takes the historical appearance and trajectory data into account. This results in enhanced localization of multiple instances of device landmarks. Our method outperforms state-of-the-art methods in interventional X-ray device tracking, especially stability and robustness, achieving an 87% reduction in max error for balloon marker detection and a 61% reduction in max error for catheter tip detection.
Related papers
- Auxiliary Input in Training: Incorporating Catheter Features into Deep Learning Models for ECG-Free Dynamic Coronary Roadmapping [17.461510586128874]
Dynamic coronary roadmapping is a technology that overlays the vessel maps (the "roadmap") extracted from an offline image sequence of X-ray angiography onto a live stream of X-ray fluoroscopy in real-time.
It aims to offer navigational guidance for interventional surgeries without the need for repeated contrast agent injections, thereby reducing the risks associated with radiation exposure and kidney failure.
arXiv Detail & Related papers (2024-08-28T17:05:38Z) - Self-Supervised Learning for Interventional Image Analytics: Towards Robust Device Trackers [6.262161803642583]
We propose a novel approach to learn procedural features from a very large data cohort of over 16 million interventional X-ray frames.
Our approach is based on a masked image modeling technique that leverages frame-based reconstruction to learn fine inter-frame temporal correspondences.
Experiments show that our method achieves 66.31% reduction in maximum tracking error against reference solutions.
arXiv Detail & Related papers (2024-05-02T10:18:22Z) - Real-time guidewire tracking and segmentation in intraoperative x-ray [52.51797358201872]
We propose a two-stage deep learning framework for real-time guidewire segmentation and tracking.
In the first stage, a Yolov5 detector is trained, using the original X-ray images as well as synthetic ones, to output the bounding boxes of possible target guidewires.
In the second stage, a novel and efficient network is proposed to segment the guidewire in each detected bounding box.
arXiv Detail & Related papers (2024-04-12T20:39:19Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
We introduce a self-supervised deep learning architecture to segment catheters in longitudinal ultrasound images.
The network architecture builds upon AiAReSeg, a segmentation transformer built with the Attention in Attention mechanism.
We validated our model on a test dataset, consisting of unseen synthetic data and images collected from silicon aorta phantoms.
arXiv Detail & Related papers (2024-03-21T15:13:36Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
endovascular surgeries are performed using the golden standard of Fluoroscopy, which uses ionising radiation to visualise catheters and vasculature.
This work proposes a solution using an adaptation of a state-of-the-art machine learning transformer architecture to detect and segment catheters in axial interventional Ultrasound image sequences.
arXiv Detail & Related papers (2023-09-25T19:34:12Z) - ConTrack: Contextual Transformer for Device Tracking in X-ray [13.788670026481324]
ConTrack is a transformer-based network that uses both spatial and temporal contextual information for accurate device detection and tracking.
Our method achieves 45% or higher accuracy in detection and tracking when compared to state-of-the-art tracking models.
arXiv Detail & Related papers (2023-07-14T14:20:09Z) - Fuzzy Attention Neural Network to Tackle Discontinuity in Airway
Segmentation [67.19443246236048]
Airway segmentation is crucial for the examination, diagnosis, and prognosis of lung diseases.
Some small-sized airway branches (e.g., bronchus and terminaloles) significantly aggravate the difficulty of automatic segmentation.
This paper presents an efficient method for airway segmentation, comprising a novel fuzzy attention neural network and a comprehensive loss function.
arXiv Detail & Related papers (2022-09-05T16:38:13Z) - Robust Landmark-based Stent Tracking in X-ray Fluoroscopy [10.917460255497227]
We propose an end-to-end deep learning framework for single stent tracking.
It consists of three hierarchical modules: U-Net based landmark detection, ResNet based stent proposal and feature extraction.
Experiments show that our method performs significantly better in detection compared with the state-of-the-art point-based tracking models.
arXiv Detail & Related papers (2022-07-20T14:20:03Z) - SQUID: Deep Feature In-Painting for Unsupervised Anomaly Detection [76.01333073259677]
We propose the use of Space-aware Memory Queues for In-painting and Detecting anomalies from radiography images (abbreviated as SQUID)
We show that SQUID can taxonomize the ingrained anatomical structures into recurrent patterns; and in the inference, it can identify anomalies (unseen/modified patterns) in the image.
arXiv Detail & Related papers (2021-11-26T13:47:34Z) - FetReg: Placental Vessel Segmentation and Registration in Fetoscopy
Challenge Dataset [57.30136148318641]
Fetoscopy laser photocoagulation is a widely used procedure for the treatment of Twin-to-Twin Transfusion Syndrome (TTTS)
This may lead to increased procedural time and incomplete ablation, resulting in persistent TTTS.
Computer-assisted intervention may help overcome these challenges by expanding the fetoscopic field of view through video mosaicking and providing better visualization of the vessel network.
We present a large-scale multi-centre dataset for the development of generalized and robust semantic segmentation and video mosaicking algorithms for the fetal environment with a focus on creating drift-free mosaics from long duration fetoscopy videos.
arXiv Detail & Related papers (2021-06-10T17:14:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.