BattleAgentBench: A Benchmark for Evaluating Cooperation and Competition Capabilities of Language Models in Multi-Agent Systems
- URL: http://arxiv.org/abs/2408.15971v1
- Date: Wed, 28 Aug 2024 17:43:55 GMT
- Title: BattleAgentBench: A Benchmark for Evaluating Cooperation and Competition Capabilities of Language Models in Multi-Agent Systems
- Authors: Wei Wang, Dan Zhang, Tao Feng, Boyan Wang, Jie Tang,
- Abstract summary: Large Language Models (LLMs) are becoming increasingly powerful and capable of handling complex tasks.
Compared to single agents, multi-agent systems have higher requirements for the collaboration capabilities of language models.
We propose a benchmark, called BattleAgentBench, which defines seven sub-stages of three varying difficulty levels.
- Score: 15.159418172629701
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) are becoming increasingly powerful and capable of handling complex tasks, e.g., building single agents and multi-agent systems. Compared to single agents, multi-agent systems have higher requirements for the collaboration capabilities of language models. Many benchmarks are proposed to evaluate their collaborative abilities. However, these benchmarks lack fine-grained evaluations of LLM collaborative capabilities. Additionally, multi-agent collaborative and competitive scenarios are ignored in existing works. To address these two problems, we propose a benchmark, called BattleAgentBench, which defines seven sub-stages of three varying difficulty levels and conducts a fine-grained evaluation of language models in terms of single-agent scenario navigation capabilities, paired-agent task execution abilities, and multi-agent collaboration and competition capabilities. We conducted extensive evaluations on leading four closed-source and seven open-source models. Experimental results indicate that API-based models perform excellently on simple tasks but open-source small models struggle with simple tasks. Regarding difficult tasks that require collaborative and competitive abilities, although API-based models have demonstrated some collaborative capabilities, there is still enormous room for improvement.
Related papers
- COMMA: A Communicative Multimodal Multi-Agent Benchmark [7.831385481814481]
We introduce a novel benchmark designed to evaluate the collaborative performance of multimodal multi-agent systems through language communication.
By testing both agent-agent and agent-human collaborations using open-source and closed-source models, our findings reveal surprising weaknesses in state-of-the-art models.
arXiv Detail & Related papers (2024-10-10T02:49:47Z) - GenAgent: Build Collaborative AI Systems with Automated Workflow Generation -- Case Studies on ComfyUI [64.57616646552869]
This paper explores collaborative AI systems that use to enhance performance to integrate models, data sources, and pipelines to solve complex and diverse tasks.
We introduce GenAgent, an LLM-based framework that automatically generates complex, offering greater flexibility and scalability compared to monolithic models.
The results demonstrate that GenAgent outperforms baseline approaches in both run-level and task-level evaluations.
arXiv Detail & Related papers (2024-09-02T17:44:10Z) - Scaling Large-Language-Model-based Multi-Agent Collaboration [75.5241464256688]
Pioneering advancements in large language model-powered agents have underscored the design pattern of multi-agent collaboration.
Inspired by the neural scaling law, this study investigates whether a similar principle applies to increasing agents in multi-agent collaboration.
arXiv Detail & Related papers (2024-06-11T11:02:04Z) - MAgIC: Investigation of Large Language Model Powered Multi-Agent in
Cognition, Adaptability, Rationality and Collaboration [102.41118020705876]
Large Language Models (LLMs) have marked a significant advancement in the field of natural language processing.
As their applications extend into multi-agent environments, a need has arisen for a comprehensive evaluation framework.
This work introduces a novel benchmarking framework specifically tailored to assess LLMs within multi-agent settings.
arXiv Detail & Related papers (2023-11-14T21:46:27Z) - Multi-Agent Consensus Seeking via Large Language Models [6.922356864800498]
Multi-agent systems driven by large language models (LLMs) have shown promising abilities for solving complex tasks in a collaborative manner.
This work considers a fundamental problem in multi-agent collaboration: consensus seeking.
arXiv Detail & Related papers (2023-10-31T03:37:11Z) - Cooperation, Competition, and Maliciousness: LLM-Stakeholders Interactive Negotiation [52.930183136111864]
We propose using scorable negotiation to evaluate Large Language Models (LLMs)
To reach an agreement, agents must have strong arithmetic, inference, exploration, and planning capabilities.
We provide procedures to create new games and increase games' difficulty to have an evolving benchmark.
arXiv Detail & Related papers (2023-09-29T13:33:06Z) - ProAgent: Building Proactive Cooperative Agents with Large Language
Models [89.53040828210945]
ProAgent is a novel framework that harnesses large language models to create proactive agents.
ProAgent can analyze the present state, and infer the intentions of teammates from observations.
ProAgent exhibits a high degree of modularity and interpretability, making it easily integrated into various coordination scenarios.
arXiv Detail & Related papers (2023-08-22T10:36:56Z) - AgentVerse: Facilitating Multi-Agent Collaboration and Exploring
Emergent Behaviors [93.38830440346783]
We propose a multi-agent framework framework that can collaboratively adjust its composition as a greater-than-the-sum-of-its-parts system.
Our experiments demonstrate that framework framework can effectively deploy multi-agent groups that outperform a single agent.
In view of these behaviors, we discuss some possible strategies to leverage positive ones and mitigate negative ones for improving the collaborative potential of multi-agent groups.
arXiv Detail & Related papers (2023-08-21T16:47:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.