Towards Effective GenAI Multi-Agent Collaboration: Design and Evaluation for Enterprise Applications
- URL: http://arxiv.org/abs/2412.05449v1
- Date: Fri, 06 Dec 2024 22:14:17 GMT
- Title: Towards Effective GenAI Multi-Agent Collaboration: Design and Evaluation for Enterprise Applications
- Authors: Raphael Shu, Nilaksh Das, Michelle Yuan, Monica Sunkara, Yi Zhang,
- Abstract summary: This report presents a comprehensive evaluation of coordination and routing capabilities in a novel multi-agent collaboration framework.<n>For coordination capabilities, we demonstrate the effectiveness of inter-agent communication and payload referencing mechanisms, achieving end-to-end goal success rates of 90%.<n>Our analysis yields several key findings: multi-agent collaboration enhances goal success rates by up to 70% compared to single-agent approaches in our benchmarks.
- Score: 15.480315462362531
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: AI agents powered by large language models (LLMs) have shown strong capabilities in problem solving. Through combining many intelligent agents, multi-agent collaboration has emerged as a promising approach to tackle complex, multi-faceted problems that exceed the capabilities of single AI agents. However, designing the collaboration protocols and evaluating the effectiveness of these systems remains a significant challenge, especially for enterprise applications. This report addresses these challenges by presenting a comprehensive evaluation of coordination and routing capabilities in a novel multi-agent collaboration framework. We evaluate two key operational modes: (1) a coordination mode enabling complex task completion through parallel communication and payload referencing, and (2) a routing mode for efficient message forwarding between agents. We benchmark on a set of handcrafted scenarios from three enterprise domains, which are publicly released with the report. For coordination capabilities, we demonstrate the effectiveness of inter-agent communication and payload referencing mechanisms, achieving end-to-end goal success rates of 90%. Our analysis yields several key findings: multi-agent collaboration enhances goal success rates by up to 70% compared to single-agent approaches in our benchmarks; payload referencing improves performance on code-intensive tasks by 23%; latency can be substantially reduced with a routing mechanism that selectively bypasses agent orchestration. These findings offer valuable guidance for enterprise deployments of multi-agent systems and advance the development of scalable, efficient multi-agent collaboration frameworks.
Related papers
- MultiAgentBench: Evaluating the Collaboration and Competition of LLM agents [59.825725526176655]
Large Language Models (LLMs) have shown remarkable capabilities as autonomous agents.
Existing benchmarks either focus on single-agent tasks or are confined to narrow domains, failing to capture the dynamics of multi-agent coordination and competition.
We introduce MultiAgentBench, a benchmark designed to evaluate LLM-based multi-agent systems across diverse, interactive scenarios.
arXiv Detail & Related papers (2025-03-03T05:18:50Z) - CaPo: Cooperative Plan Optimization for Efficient Embodied Multi-Agent Cooperation [98.11670473661587]
CaPo improves cooperation efficiency with two phases: 1) meta-plan generation, and 2) progress-adaptive meta-plan and execution.
Experimental results on the ThreeDworld Multi-Agent Transport and Communicative Watch-And-Help tasks demonstrate that CaPo achieves much higher task completion rate and efficiency compared with state-of-the-arts.
arXiv Detail & Related papers (2024-11-07T13:08:04Z) - COMMA: A Communicative Multimodal Multi-Agent Benchmark [7.831385481814481]
We introduce a novel benchmark designed to evaluate the collaborative performance of multimodal multi-agent systems through language communication.
By testing both agent-agent and agent-human collaborations using open-source and closed-source models, our findings reveal surprising weaknesses in state-of-the-art models.
arXiv Detail & Related papers (2024-10-10T02:49:47Z) - Agent-Oriented Planning in Multi-Agent Systems [54.429028104022066]
We propose a novel framework for agent-oriented planning in multi-agent systems, leveraging a fast task decomposition and allocation process.
We integrate a feedback loop into the proposed framework to further enhance the effectiveness and robustness of such a problem-solving process.
arXiv Detail & Related papers (2024-10-03T04:07:51Z) - BattleAgentBench: A Benchmark for Evaluating Cooperation and Competition Capabilities of Language Models in Multi-Agent Systems [15.159418172629701]
Large Language Models (LLMs) are becoming increasingly powerful and capable of handling complex tasks.
Compared to single agents, multi-agent systems have higher requirements for the collaboration capabilities of language models.
We propose a benchmark, called BattleAgentBench, which defines seven sub-stages of three varying difficulty levels.
arXiv Detail & Related papers (2024-08-28T17:43:55Z) - Learning Multi-Agent Communication from Graph Modeling Perspective [62.13508281188895]
We introduce a novel approach wherein we conceptualize the communication architecture among agents as a learnable graph.
Our proposed approach, CommFormer, efficiently optimize the communication graph and concurrently refines architectural parameters through gradient descent in an end-to-end manner.
arXiv Detail & Related papers (2024-05-14T12:40:25Z) - Reaching Consensus in Cooperative Multi-Agent Reinforcement Learning
with Goal Imagination [16.74629849552254]
We propose a model-based consensus mechanism to explicitly coordinate multiple agents.
The proposed Multi-agent Goal Imagination (MAGI) framework guides agents to reach consensus with an Imagined common goal.
We show that such efficient consensus mechanism can guide all agents cooperatively reaching valuable future states.
arXiv Detail & Related papers (2024-03-05T18:07:34Z) - AgentScope: A Flexible yet Robust Multi-Agent Platform [66.64116117163755]
AgentScope is a developer-centric multi-agent platform with message exchange as its core communication mechanism.
The abundant syntactic tools, built-in agents and service functions, user-friendly interfaces for application demonstration and utility monitor, zero-code programming workstation, and automatic prompt tuning mechanism significantly lower the barriers to both development and deployment.
arXiv Detail & Related papers (2024-02-21T04:11:28Z) - Multi-Agent Consensus Seeking via Large Language Models [6.922356864800498]
Multi-agent systems driven by large language models (LLMs) have shown promising abilities for solving complex tasks in a collaborative manner.
This work considers a fundamental problem in multi-agent collaboration: consensus seeking.
arXiv Detail & Related papers (2023-10-31T03:37:11Z) - AgentVerse: Facilitating Multi-Agent Collaboration and Exploring
Emergent Behaviors [93.38830440346783]
We propose a multi-agent framework framework that can collaboratively adjust its composition as a greater-than-the-sum-of-its-parts system.
Our experiments demonstrate that framework framework can effectively deploy multi-agent groups that outperform a single agent.
In view of these behaviors, we discuss some possible strategies to leverage positive ones and mitigate negative ones for improving the collaborative potential of multi-agent groups.
arXiv Detail & Related papers (2023-08-21T16:47:11Z) - Multi-agent Deep Covering Skill Discovery [50.812414209206054]
We propose Multi-agent Deep Covering Option Discovery, which constructs the multi-agent options through minimizing the expected cover time of the multiple agents' joint state space.
Also, we propose a novel framework to adopt the multi-agent options in the MARL process.
We show that the proposed algorithm can effectively capture the agent interactions with the attention mechanism, successfully identify multi-agent options, and significantly outperforms prior works using single-agent options or no options.
arXiv Detail & Related papers (2022-10-07T00:40:59Z) - HAVEN: Hierarchical Cooperative Multi-Agent Reinforcement Learning with
Dual Coordination Mechanism [17.993973801986677]
Multi-agent reinforcement learning often suffers from the exponentially larger action space caused by a large number of agents.
We propose a novel value decomposition framework HAVEN based on hierarchical reinforcement learning for the fully cooperative multi-agent problems.
arXiv Detail & Related papers (2021-10-14T10:43:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.