Artificial Neural Network and Deep Learning: Fundamentals and Theory
- URL: http://arxiv.org/abs/2408.16002v1
- Date: Mon, 12 Aug 2024 21:06:59 GMT
- Title: Artificial Neural Network and Deep Learning: Fundamentals and Theory
- Authors: M. M. Hammad,
- Abstract summary: This book lays a solid groundwork for understanding data and probability distributions.
The book delves into multilayer feed-forward neural networks, explaining their architecture, training processes, and the backpropagation algorithm.
The text covers various learning rate schedules and adaptive algorithms, providing strategies to optimize the training process.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: "Artificial Neural Network and Deep Learning: Fundamentals and Theory" offers a comprehensive exploration of the foundational principles and advanced methodologies in neural networks and deep learning. This book begins with essential concepts in descriptive statistics and probability theory, laying a solid groundwork for understanding data and probability distributions. As the reader progresses, they are introduced to matrix calculus and gradient optimization, crucial for training and fine-tuning neural networks. The book delves into multilayer feed-forward neural networks, explaining their architecture, training processes, and the backpropagation algorithm. Key challenges in neural network optimization, such as activation function saturation, vanishing and exploding gradients, and weight initialization, are thoroughly discussed. The text covers various learning rate schedules and adaptive algorithms, providing strategies to optimize the training process. Techniques for generalization and hyperparameter tuning, including Bayesian optimization and Gaussian processes, are also presented to enhance model performance and prevent overfitting. Advanced activation functions are explored in detail, categorized into sigmoid-based, ReLU-based, ELU-based, miscellaneous, non-standard, and combined types. Each activation function is examined for its properties and applications, offering readers a deep understanding of their impact on neural network behavior. The final chapter introduces complex-valued neural networks, discussing complex numbers, functions, and visualizations, as well as complex calculus and backpropagation algorithms. This book equips readers with the knowledge and skills necessary to design, and optimize advanced neural network models, contributing to the ongoing advancements in artificial intelligence.
Related papers
- Peer-to-Peer Learning Dynamics of Wide Neural Networks [10.179711440042123]
We provide an explicit, non-asymptotic characterization of the learning dynamics of wide neural networks trained using popularDGD algorithms.
We validate our analytical results by accurately predicting error and error and for classification tasks.
arXiv Detail & Related papers (2024-09-23T17:57:58Z) - From Lazy to Rich: Exact Learning Dynamics in Deep Linear Networks [47.13391046553908]
In artificial networks, the effectiveness of these models relies on their ability to build task specific representation.
Prior studies highlight that different initializations can place networks in either a lazy regime, where representations remain static, or a rich/feature learning regime, where representations evolve dynamically.
These solutions capture the evolution of representations and the Neural Kernel across the spectrum from the rich to the lazy regimes.
arXiv Detail & Related papers (2024-09-22T23:19:04Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - NeuralFastLAS: Fast Logic-Based Learning from Raw Data [54.938128496934695]
Symbolic rule learners generate interpretable solutions, however they require the input to be encoded symbolically.
Neuro-symbolic approaches overcome this issue by mapping raw data to latent symbolic concepts using a neural network.
We introduce NeuralFastLAS, a scalable and fast end-to-end approach that trains a neural network jointly with a symbolic learner.
arXiv Detail & Related papers (2023-10-08T12:33:42Z) - Deep Learning Meets Sparse Regularization: A Signal Processing
Perspective [17.12783792226575]
We present a mathematical framework that characterizes the functional properties of neural networks that are trained to fit to data.
Key mathematical tools which support this framework include transform-domain sparse regularization, the Radon transform of computed tomography, and approximation theory.
This framework explains the effect of weight decay regularization in neural network training, the use of skip connections and low-rank weight matrices in network architectures, the role of sparsity in neural networks, and explains why neural networks can perform well in high-dimensional problems.
arXiv Detail & Related papers (2023-01-23T17:16:21Z) - Gaussian Process Surrogate Models for Neural Networks [6.8304779077042515]
In science and engineering, modeling is a methodology used to understand complex systems whose internal processes are opaque.
We construct a class of surrogate models for neural networks using Gaussian processes.
We demonstrate our approach captures existing phenomena related to the spectral bias of neural networks, and then show that our surrogate models can be used to solve practical problems.
arXiv Detail & Related papers (2022-08-11T20:17:02Z) - Neuro-Symbolic Learning of Answer Set Programs from Raw Data [54.56905063752427]
Neuro-Symbolic AI aims to combine interpretability of symbolic techniques with the ability of deep learning to learn from raw data.
We introduce Neuro-Symbolic Inductive Learner (NSIL), an approach that trains a general neural network to extract latent concepts from raw data.
NSIL learns expressive knowledge, solves computationally complex problems, and achieves state-of-the-art performance in terms of accuracy and data efficiency.
arXiv Detail & Related papers (2022-05-25T12:41:59Z) - Predictive Coding: Towards a Future of Deep Learning beyond
Backpropagation? [41.58529335439799]
The backpropagation of error algorithm used to train deep neural networks has been fundamental to the successes of deep learning.
Recent work has developed the idea into a general-purpose algorithm able to train neural networks using only local computations.
We show the substantially greater flexibility of predictive coding networks against equivalent deep neural networks.
arXiv Detail & Related papers (2022-02-18T22:57:03Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
We propose a topological perspective to represent a network into a complete graph for analysis.
By assigning learnable parameters to the edges which reflect the magnitude of connections, the learning process can be performed in a differentiable manner.
This learning process is compatible with existing networks and owns adaptability to larger search spaces and different tasks.
arXiv Detail & Related papers (2020-08-19T04:53:31Z) - Spiking Neural Networks Hardware Implementations and Challenges: a
Survey [53.429871539789445]
Spiking Neural Networks are cognitive algorithms mimicking neuron and synapse operational principles.
We present the state of the art of hardware implementations of spiking neural networks.
We discuss the strategies employed to leverage the characteristics of these event-driven algorithms at the hardware level.
arXiv Detail & Related papers (2020-05-04T13:24:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.