論文の概要: Is Personality Prediction Possible Based on Reddit Comments?
- arxiv url: http://arxiv.org/abs/2408.16089v1
- Date: Wed, 28 Aug 2024 18:43:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-30 17:43:40.849894
- Title: Is Personality Prediction Possible Based on Reddit Comments?
- Title(参考訳): Redditコメントに基づくパーソナリティ予測は可能か?
- Authors: Robert Deimann, Till Preidt, Shaptarshi Roy, Jan Stanicki,
- Abstract要約: 本研究では,人物の性格型と書いた文章の関連性について検討する。
これを実現するため、著者のMyers-Briggs Type Indicator (MBTI)にラベル付けされたRedditコメントのデータセットを集約し、BERTに基づいて異なる教師付き分類器を構築し、著者の性格をテキストで予測しようとした。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this assignment, we examine whether there is a correlation between the personality type of a person and the texts they wrote. In order to do this, we aggregated datasets of Reddit comments labeled with the Myers-Briggs Type Indicator (MBTI) of the author and built different supervised classifiers based on BERT to try to predict the personality of an author given a text. Despite experiencing issues with the unfiltered character of the dataset, we can observe potential in the classification.
- Abstract(参考訳): 本研究では,人物の性格型と書いた文章の関連性について検討する。
これを実現するため、著者のMyers-Briggs Type Indicator (MBTI)にラベル付けされたRedditコメントのデータセットを集約し、BERTに基づいて異なる教師付き分類器を構築し、著者の性格をテキストで予測しようとした。
データセットの未フィルタリング文字の問題を経験しながらも、分類のポテンシャルを観察することができる。
関連論文リスト
- Personality Style Recognition via Machine Learning: Identifying
Anaclitic and Introjective Personality Styles from Patients' Speech [6.3042597209752715]
自然言語処理(NLP)と機械学習ツールを使って分類する。
大うつ病(MDD)と診断された79人の患者を対象に、記録された臨床診断面接(CDI)のデータセットでこれを検証した。
言語由来の特徴(LIWCに基づく)による自動分類は,アンケートに基づく分類モデルよりも有意に優れていることがわかった。
論文 参考訳(メタデータ) (2023-11-07T15:56:19Z) - PsyCoT: Psychological Questionnaire as Powerful Chain-of-Thought for
Personality Detection [50.66968526809069]
PsyCoTと呼ばれる新しい人格検出手法を提案する。これは、個人がマルチターン対話方式で心理的質問を完遂する方法を模倣するものである。
実験の結果,PsyCoTは人格検出におけるGPT-3.5の性能とロバスト性を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2023-10-31T08:23:33Z) - Editing Personality for Large Language Models [73.59001811199823]
本稿では,Large Language Models (LLMs) の性格特性の編集に焦点をあてた革新的なタスクを紹介する。
このタスクに対処する新しいベンチマークデータセットであるPersonalityEditを構築します。
論文 参考訳(メタデータ) (2023-10-03T16:02:36Z) - Personality Detection and Analysis using Twitter Data [7.584657555037871]
私たちは、研究コミュニティのために、最も大きな自動キュレートされたデータセットをリリースします。
このデータセットには1億5200万のツイートと、Myers-Briggs Personal Type (MBTI)予測タスク用の56万のデータポイントが含まれている。
興味深い分析結果が自然の直感にどのように従うかを示す。
論文 参考訳(メタデータ) (2023-09-11T14:39:04Z) - Personality Understanding of Fictional Characters during Book Reading [81.68515671674301]
この問題に対する最初のラベル付きデータセットPersoNetを提示する。
当社の新たなアノテーション戦略では,オリジナル書籍のプロキシとして,オンライン読書アプリからユーザノートを注釈付けします。
実験と人間の研究は、データセットの構築が効率的かつ正確であることを示している。
論文 参考訳(メタデータ) (2023-05-17T12:19:11Z) - PART: Pre-trained Authorship Representation Transformer [64.78260098263489]
文書を書く著者は、語彙、レジストリ、句読点、ミススペル、絵文字の使用など、テキスト内での識別情報をインプリントする。
以前の作品では、手作りのフィーチャや分類タスクを使用して著者モデルをトレーニングし、ドメイン外の著者に対するパフォーマンスの低下につながった。
セマンティクスの代わりにtextbfauthorship の埋め込みを学習するために、対照的に訓練されたモデルを提案する。
論文 参考訳(メタデータ) (2022-09-30T11:08:39Z) - Exploring Personality and Online Social Engagement: An Investigation of
MBTI Users on Twitter [0.0]
自称マイアーズ・ブリッグス性格特性(MBTI)を用いたTwitterのプロフィール3848件について検討する。
我々は、ディープラーニングに基づく最先端のNLPアーキテクチャであるBERTを利用して、タスクに最も予測力を持つさまざまなテキストソースを分析します。
MBTIシステムの全次元に対して, 伝記, ステータス, お気に入りツイートが有意な予測力を持っていることがわかった。
論文 参考訳(メタデータ) (2021-09-14T02:26:30Z) - Matching Theory and Data with Personal-ITY: What a Corpus of Italian
YouTube Comments Reveals About Personality [11.38723572165938]
私たちはイタリア語でYouTubeコメントの新しいコーパスを作成し、そこでは作家が個性的な特徴をラベル付けしている。
この特徴はMBTIという心理学研究における主要な個性理論の1つに由来する。
本研究は, TwiStyだけでなく, コーパス上での個性予測の課題について検討する。
論文 参考訳(メタデータ) (2020-11-11T12:45:33Z) - FIND: Human-in-the-Loop Debugging Deep Text Classifiers [55.135620983922564]
隠れた機能を無効にすることで、人間がディープラーニングテキスト分類器をデバッグできるフレームワークであるFINDを提案する。
実験により、人間はFINDを使用することで、異なる種類の不完全なデータセットの下で訓練されたCNNテキスト分類器を改善することができる。
論文 参考訳(メタデータ) (2020-10-10T12:52:53Z) - Vyaktitv: A Multimodal Peer-to-Peer Hindi Conversations based Dataset
for Personality Assessment [50.15466026089435]
本稿では,ピアツーピアのHindi会話データセットであるVyaktitvを提案する。
参加者の高品質な音声とビデオの録音と、会話ごとにヒングリッシュのテキストによる書き起こしで構成されている。
データセットには、収入、文化的指向など、すべての参加者のための豊富な社会デコグラフィー的特徴が含まれています。
論文 参考訳(メタデータ) (2020-08-31T17:44:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。