Single-Photon 3D Imaging with Equi-Depth Photon Histograms
- URL: http://arxiv.org/abs/2408.16150v1
- Date: Wed, 28 Aug 2024 22:02:38 GMT
- Title: Single-Photon 3D Imaging with Equi-Depth Photon Histograms
- Authors: Kaustubh Sadekar, David Maier, Atul Ingle,
- Abstract summary: Single-photon 3D cameras estimate the round-trip time of a laser pulse by forming equi-width (EW) histograms of detected photon timestamps.
EW histograms require high bandwidth and in-pixel memory, making SPCs less attractive in resource-constrained settings.
We propose a 3D sensing technique based on equi-depth (ED) histograms.
- Score: 4.432168053497992
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Single-photon cameras present a promising avenue for high-resolution 3D imaging. They have ultra-high sensitivity -- down to individual photons -- and can record photon arrival times with extremely high (sub-nanosecond) resolution. Single-photon 3D cameras estimate the round-trip time of a laser pulse by forming equi-width (EW) histograms of detected photon timestamps. Acquiring and transferring such EW histograms requires high bandwidth and in-pixel memory, making SPCs less attractive in resource-constrained settings such as mobile devices and AR/VR headsets. In this work we propose a 3D sensing technique based on equi-depth (ED) histograms. ED histograms compress timestamp data more efficiently than EW histograms, reducing the bandwidth requirement. Moreover, to reduce the in-pixel memory requirement, we propose a lightweight algorithm to estimate ED histograms in an online fashion without explicitly storing the photon timestamps. This algorithm is amenable to future in-pixel implementations. We propose algorithms that process ED histograms to perform 3D computer-vision tasks of estimating scene distance maps and performing visual odometry under challenging conditions such as high ambient light. Our work paves the way towards lower bandwidth and reduced in-pixel memory requirements for SPCs, making them attractive for resource-constrained 3D vision applications. Project page: $\href{https://www.computational.camera/pedh}{https://www.computational.camera/pedh}$
Related papers
- bit2bit: 1-bit quanta video reconstruction via self-supervised photon prediction [57.199618102578576]
We propose bit2bit, a new method for reconstructing high-quality image stacks at original resolution from sparse binary quantatemporal image data.
Inspired by recent work on Poisson denoising, we developed an algorithm that creates a dense image sequence from sparse binary photon data.
We present a novel dataset containing a wide range of real SPAD high-speed videos under various challenging imaging conditions.
arXiv Detail & Related papers (2024-10-30T17:30:35Z) - Transientangelo: Few-Viewpoint Surface Reconstruction Using Single-Photon Lidar [8.464054039931245]
Lidar captures 3D scene geometry by emitting pulses of light to a target and recording the speed-of-light time delay of the reflected light.
conventional lidar systems do not output the raw, captured waveforms of backscattered light.
We develop new regularization strategies that improve robustness to photon noise, enabling accurate surface reconstruction with as few as 10 photons per pixel.
arXiv Detail & Related papers (2024-08-22T08:12:09Z) - Lite2Relight: 3D-aware Single Image Portrait Relighting [87.62069509622226]
Lite2Relight is a novel technique that can predict 3D consistent head poses of portraits.
By utilizing a pre-trained geometry-aware encoder and a feature alignment module, we map input images into a relightable 3D space.
This includes producing 3D-consistent results of the full head, including hair, eyes, and expressions.
arXiv Detail & Related papers (2024-07-15T07:16:11Z) - Count-Free Single-Photon 3D Imaging with Race Logic [6.204834501774316]
A single-photon 3D camera determines the round-trip time of a laser pulse by capturing the arrival of individual photons at each camera pixel.
In-pixel histogram processing is computationally expensive and requires large amount of memory per pixel.
Here we present an online approach for distance estimation without explicitly storing photon counts.
arXiv Detail & Related papers (2023-07-10T22:17:59Z) - Real-Time Radiance Fields for Single-Image Portrait View Synthesis [85.32826349697972]
We present a one-shot method to infer and render a 3D representation from a single unposed image in real-time.
Given a single RGB input, our image encoder directly predicts a canonical triplane representation of a neural radiance field for 3D-aware novel view synthesis via volume rendering.
Our method is fast (24 fps) on consumer hardware, and produces higher quality results than strong GAN-inversion baselines that require test-time optimization.
arXiv Detail & Related papers (2023-05-03T17:56:01Z) - Shakes on a Plane: Unsupervised Depth Estimation from Unstabilized
Photography [54.36608424943729]
We show that in a ''long-burst'', forty-two 12-megapixel RAW frames captured in a two-second sequence, there is enough parallax information from natural hand tremor alone to recover high-quality scene depth.
We devise a test-time optimization approach that fits a neural RGB-D representation to long-burst data and simultaneously estimates scene depth and camera motion.
arXiv Detail & Related papers (2022-12-22T18:54:34Z) - 3D Scene Inference from Transient Histograms [17.916392079019175]
Time-resolved image sensors that capture light at pico-to-nanosecond were once limited to niche applications.
We propose low-cost and low-power imaging modalities that capture scene information from minimal time-resolved image sensors.
arXiv Detail & Related papers (2022-11-09T18:31:50Z) - Video super-resolution for single-photon LIDAR [0.0]
3D Time-of-Flight (ToF) image sensors are used widely in applications such as self-driving cars, Augmented Reality (AR) and robotics.
In this paper, we use synthetic depth sequences to train a 3D Convolutional Neural Network (CNN) for denoising and upscaling (x4) depth data.
With GPU acceleration, frames are processed at >30 frames per second, making the approach suitable for low-latency imaging, as required for obstacle avoidance.
arXiv Detail & Related papers (2022-10-19T11:33:29Z) - Simple and Effective Synthesis of Indoor 3D Scenes [78.95697556834536]
We study the problem of immersive 3D indoor scenes from one or more images.
Our aim is to generate high-resolution images and videos from novel viewpoints.
We propose an image-to-image GAN that maps directly from reprojections of incomplete point clouds to full high-resolution RGB-D images.
arXiv Detail & Related papers (2022-04-06T17:54:46Z) - High-speed object detection with a single-photon time-of-flight image
sensor [2.648554238948439]
We present results from a portable SPAD camera system that outputs 16-bin photon timing histograms with 64x32 spatial resolution.
The results are relevant for safety-critical computer vision applications which would benefit from faster than human reaction times.
arXiv Detail & Related papers (2021-07-28T14:53:44Z) - Lightweight Multi-View 3D Pose Estimation through Camera-Disentangled
Representation [57.11299763566534]
We present a solution to recover 3D pose from multi-view images captured with spatially calibrated cameras.
We exploit 3D geometry to fuse input images into a unified latent representation of pose, which is disentangled from camera view-points.
Our architecture then conditions the learned representation on camera projection operators to produce accurate per-view 2d detections.
arXiv Detail & Related papers (2020-04-05T12:52:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.