Demonstrating two-particle interference with a one-dimensional delta potential well
- URL: http://arxiv.org/abs/2408.16205v1
- Date: Thu, 29 Aug 2024 01:55:33 GMT
- Title: Demonstrating two-particle interference with a one-dimensional delta potential well
- Authors: Zhi Jiao Deng, Xin Zhang, Yong Shen, Wei Tao Liu, Ping Xing Chen,
- Abstract summary: This paper describes a model of two-particle interference using a one-dimensional delta potential as well as a beam splitter.
The interference processes of bosons, fermions and distinguishable particles are demonstrated and compared in detail.
The method presented here is concrete, easy to visualize, and can help students to better understand the effects arising from the exchange symmetry of wave functions.
- Score: 2.259304313859982
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In quantum mechanics, the exchange symmetry of wave functions for identical particles has observable effects, including the widely studied Hong-Ou-Mandel (HOM) effect. A theoretical description using second quantization is elegant but abstract. In contrast, this paper describes a simple model of two-particle interference using a one-dimensional delta potential well as a beam splitter. The conditions for the HOM effect are derived from the perspective of wave packet evolution. Furthermore, the interference processes of bosons, fermions and distinguishable particles are demonstrated and compared in detail. The method presented here is concrete, easy to visualize, and can help students to better understand the effects arising from the exchange symmetry of wave functions. The main results can be animated for classroom teaching or developed into an undergraduate seminar topic.
Related papers
- Lattice-induced wavefunction effects on trapped superfluids [0.0]
We derive an effective hydrodynamic theory for ultracold bosons in optical lattices.
In a dynamic process, the wavefunction effects are featured by the eigenfrequency, amplitude, and phase shift of an excited breathing mode.
Our discovery advances the connections between the modern band theory and quantum many-body physics.
arXiv Detail & Related papers (2024-01-25T08:04:47Z) - Influence of polarization and the environment on wave-particle duality [0.0]
Wave-particle duality ascribes mutually exclusive behaviors to quantum systems that cannot be observed simultaneously.
Here, we use quantum information-theoretic tools to derive quantifiers of two properties, which account for the combined influence of path probability and polarization.
The derived quantities can work as probes in the study of open quantum dynamics.
arXiv Detail & Related papers (2022-04-29T20:41:26Z) - Characterization of Two-Particle Interference by Complementarity [0.0]
Bohr's Complementarity Principle is formulated in terms of the distinguishability of various paths a quanton can take, and the measure of the interference it produces.
The Hong-Ou-Mandel (HOM) effect and the Hanbury-Brown-Twiss (HBT) effect are two well known examples.
Two-particle interference is not as easy to define as its single particle counterpart, and the realization that it involves interference of two-particle amplitudes came much later.
arXiv Detail & Related papers (2022-01-12T16:43:05Z) - Quantum asymmetry and noisy multi-mode interferometry [55.41644538483948]
Quantum asymmetry is a physical resource which coincides with the amount of coherence between the eigenspaces of a generator.
We show that the asymmetry may emphincrease as a result of a emphdecrease of coherence inside a degenerate subspace.
arXiv Detail & Related papers (2021-07-23T07:30:57Z) - Machine Learning S-Wave Scattering Phase Shifts Bypassing the Radial
Schr\"odinger Equation [77.34726150561087]
We present a proof of concept machine learning model resting on a convolutional neural network capable to yield accurate scattering s-wave phase shifts.
We discuss how the Hamiltonian can serve as a guiding principle in the construction of a physically-motivated descriptor.
arXiv Detail & Related papers (2021-06-25T17:25:38Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Quantum walk of two anyons across a statistical boundary [0.0]
We model a quantum walk of identical particles that can change their exchange statistics by hopping across a domain wall in a 1D lattice.
We find that the two-particle interference is dramatically altered by reflections of these bunched waves at the interface.
arXiv Detail & Related papers (2020-12-07T19:00:11Z) - Two sites coherence and visibility [0.0]
Wave-particle duality and the superposition of quantum mechanical states furnish quantum mechanics with unique features.
The two principles are responsible for the observation of the interference effects of quantum particles such as electrons, atoms and molecules.
arXiv Detail & Related papers (2020-06-12T05:06:37Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z) - External and internal wave functions: de Broglie's double-solution
theory? [77.34726150561087]
We propose an interpretative framework for quantum mechanics corresponding to the specifications of Louis de Broglie's double-solution theory.
The principle is to decompose the evolution of a quantum system into two wave functions.
For Schr"odinger, the particles are extended and the square of the module of the (internal) wave function of an electron corresponds to the density of its charge in space.
arXiv Detail & Related papers (2020-01-13T13:41:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.