論文の概要: Enhancing Customer Churn Prediction in Telecommunications: An Adaptive Ensemble Learning Approach
- arxiv url: http://arxiv.org/abs/2408.16284v1
- Date: Thu, 29 Aug 2024 06:27:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-30 14:55:17.148485
- Title: Enhancing Customer Churn Prediction in Telecommunications: An Adaptive Ensemble Learning Approach
- Title(参考訳): 電気通信における顧客チャーン予測の強化--適応型アンサンブル学習アプローチ
- Authors: Mohammed Affan Shaikhsurab, Pramod Magadum,
- Abstract要約: 本稿では,高精度な顧客チャーン予測のための適応型アンサンブル学習フレームワークを提案する。
このフレームワークは、XGBoost、LightGBM、LSTM、Multi-Layer Perceptron(MLP)ニューラルネットワーク、Support Vector Machine(SVM)など、複数のベースモデルを統合する。
この研究は99.28%の精度を達成し、チャーン予測の大きな進歩を示している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Customer churn, the discontinuation of services by existing customers, poses a significant challenge to the telecommunications industry. This paper proposes a novel adaptive ensemble learning framework for highly accurate customer churn prediction. The framework integrates multiple base models, including XGBoost, LightGBM, LSTM, a Multi-Layer Perceptron (MLP) neural network, and Support Vector Machine (SVM). These models are strategically combined using a stacking ensemble method, further enhanced by meta-feature generation from base model predictions. A rigorous data preprocessing pipeline, coupled with a multi-faceted feature engineering approach, optimizes model performance. The framework is evaluated on three publicly available telecom churn datasets, demonstrating substantial accuracy improvements over state-of-the-art techniques. The research achieves a remarkable 99.28% accuracy, signifying a major advancement in churn prediction.The implications of this research for developing proactive customer retention strategies withinthe telecommunications industry are discussed.
- Abstract(参考訳): 既存の顧客によるサービス停止である顧客チャーンは、通信業界にとって大きな課題となっている。
本稿では,高精度な顧客チャーン予測のための適応型アンサンブル学習フレームワークを提案する。
このフレームワークは、XGBoost、LightGBM、LSTM、MLP(Multi-Layer Perceptron)ニューラルネットワーク、Support Vector Machine(SVM)など、複数のベースモデルを統合する。
これらのモデルは積み重ねアンサンブル法を用いて戦略的に組み合わせられ、ベースモデル予測からメタ機能生成によりさらに強化される。
厳格なデータ前処理パイプラインは、多面的な機能エンジニアリングアプローチと組み合わせて、モデルパフォーマンスを最適化する。
このフレームワークは3つの公開通信チャーンデータセットで評価されており、最先端技術よりもかなり精度が向上している。
本研究は, 電気通信業界における積極的顧客維持戦略開発における大きな進展を示す, 99.28%の精度を達成している。
関連論文リスト
- A Collaborative Ensemble Framework for CTR Prediction [73.59868761656317]
我々は、複数の異なるモデルを活用するための新しいフレームワーク、CETNet(Collaborative Ensemble Training Network)を提案する。
ナイーブなモデルスケーリングとは違って,私たちのアプローチは,共同学習による多様性とコラボレーションを重視しています。
当社のフレームワークは,Metaの3つのパブリックデータセットと大規模産業データセットに基づいて検証する。
論文 参考訳(メタデータ) (2024-11-20T20:38:56Z) - Revolutionizing Retail Analytics: Advancing Inventory and Customer Insight with AI [0.0]
本稿では,最先端機械学習技術を活用した革新的なアプローチを提案する。
我々は、これらの技術を活用して小売効率と顧客エンゲージメントを向上させる、高度なスマート小売分析システム(SRAS)の構築を目指している。
論文 参考訳(メタデータ) (2024-02-24T11:03:01Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
より優れた重量空間を実現するために、新しいデータモデル共設計視点を導入する。
具体的には、提案したVPNフレームワークでニューラルネットワークのスパーシフィケーションをアップグレードするために、カスタマイズされたVisual Promptが実装されている。
論文 参考訳(メタデータ) (2023-12-03T13:50:24Z) - Churn Prediction via Multimodal Fusion Learning:Integrating Customer
Financial Literacy, Voice, and Behavioral Data [14.948017876322597]
本稿では,金融サービスプロバイダの顧客リスクレベルを特定するためのマルチモーダル融合学習モデルを提案する。
弊社のアプローチは、顧客感情の財務リテラシー(FL)レベルと、財務行動データを統合している。
我々の新しいアプローチは、チャーン予測の顕著な改善を示し、テスト精度91.2%、平均精度66、マクロ平均F1スコア54を達成した。
論文 参考訳(メタデータ) (2023-12-03T06:28:55Z) - PeFLL: Personalized Federated Learning by Learning to Learn [16.161876130822396]
PeFLLは,3つの側面で最先端の学習を改善する,個人化された新しいフェデレーション学習アルゴリズムである。
PeFLLの中核には、埋め込みネットワークとハイパーネットワークを共同でトレーニングする学習から学習へのアプローチがある。
論文 参考訳(メタデータ) (2023-06-08T19:12:42Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
本稿では,ニューラルネットワークを一般化し,トランスフォーマーアーキテクチャを用いて獲得関数を学習する,エンド・ツー・エンドの差別化可能な最初のメタBOフレームワークを提案する。
我々は、この強化学習(RL)によるエンドツーエンドのフレームワークを、ラベル付き取得データの欠如に対処できるようにします。
論文 参考訳(メタデータ) (2023-05-25T10:58:46Z) - An Empirical Study of Multimodal Model Merging [148.48412442848795]
モデルマージは、異なるタスクでトレーニングされた複数のモデルを融合してマルチタスクソリューションを生成するテクニックである。
我々は、モダリティ固有のアーキテクチャのビジョン、言語、およびクロスモーダルトランスフォーマーをマージできる新しい目標に向けて研究を行っている。
本稿では,重み間の距離を推定し,マージ結果の指標となる2つの指標を提案する。
論文 参考訳(メタデータ) (2023-04-28T15:43:21Z) - Personalizing Federated Learning with Over-the-Air Computations [84.8089761800994]
フェデレートされたエッジ学習は、プライバシー保護の方法で無線ネットワークのエッジにインテリジェンスをデプロイする、有望な技術である。
このような設定の下で、複数のクライアントは、エッジサーバの調整の下でグローバルジェネリックモデルを協調的にトレーニングする。
本稿では,アナログオーバー・ザ・エア計算を用いて通信ボトルネックに対処する分散トレーニングパラダイムを提案する。
論文 参考訳(メタデータ) (2023-02-24T08:41:19Z) - FedNet2Net: Saving Communication and Computations in Federated Learning
with Model Growing [0.0]
フェデレート・ラーニング(Federated Learning, FL)は、最近開発された機械学習の分野である。
本稿では「モデル成長」の概念に基づく新しいスキームを提案する。
提案手法は3つの標準ベンチマークで広範囲に検証され、通信とクライアントの計算の大幅な削減を実現することが示されている。
論文 参考訳(メタデータ) (2022-07-19T21:54:53Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
本稿では,エッジ支援型民主化学習機構であるEdge-DemLearnの階層的学習構造を示す。
また、Edge-DemLearnを柔軟なモデルトレーニングメカニズムとして検証し、リージョンに分散制御と集約の方法論を構築する。
論文 参考訳(メタデータ) (2020-12-01T11:46:03Z) - Social Network Analytics for Churn Prediction in Telco: Model Building,
Evaluation and Network Architecture [8.592714155264613]
ソーシャルネットワークのアナリティクスは、通信業界で顧客の混乱を予測するために使われており、大きな成功を収めている。
我々は,8つのコール・ディテール・レコード・データセットに適用することにより,関係学習者を構築するための様々な戦略をベンチマークする。
本稿では,通信業界におけるソーシャルネットワーク分析の適用方法に関するガイドラインを最適に提示する。
論文 参考訳(メタデータ) (2020-01-18T17:09:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。