論文の概要: Bootstrap Segmentation Foundation Model under Distribution Shift via Object-Centric Learning
- arxiv url: http://arxiv.org/abs/2408.16310v1
- Date: Thu, 29 Aug 2024 07:16:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-30 14:43:40.477231
- Title: Bootstrap Segmentation Foundation Model under Distribution Shift via Object-Centric Learning
- Title(参考訳): 物体中心学習による分布シフトを考慮したブートストラップ分割基礎モデル
- Authors: Luyao Tang, Yuxuan Yuan, Chaoqi Chen, Kunze Huang, Xinghao Ding, Yue Huang,
- Abstract要約: 本稿では,オブジェクト中心の表現を生成するために,エンコーダの機能を自己教師付きで再構築する手法であるSlotSAMを紹介する。
これらの表現はファンデーションモデルに統合され、オブジェクトレベルの知覚能力を強化します。
- 参考スコア(独自算出の注目度): 36.77777881242487
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Foundation models have made incredible strides in achieving zero-shot or few-shot generalization, leveraging prompt engineering to mimic the problem-solving approach of human intelligence. However, when it comes to some foundation models like Segment Anything, there is still a challenge in performing well on out-of-distribution data, including camouflaged and medical images. Inconsistent prompting strategies during fine-tuning and testing further compound the issue, leading to decreased performance. Drawing inspiration from how human cognition processes new environments, we introduce SlotSAM, a method that reconstructs features from the encoder in a self-supervised manner to create object-centric representations. These representations are then integrated into the foundation model, bolstering its object-level perceptual capabilities while reducing the impact of distribution-related variables. The beauty of SlotSAM lies in its simplicity and adaptability to various tasks, making it a versatile solution that significantly enhances the generalization abilities of foundation models. Through limited parameter fine-tuning in a bootstrap manner, our approach paves the way for improved generalization in novel environments. The code is available at github.com/lytang63/SlotSAM.
- Abstract(参考訳): ファウンデーションモデルは、ゼロショットや少数ショットの一般化を達成し、迅速なエンジニアリングを活用して、人間の知能の問題解決アプローチを模倣している。
しかし、Segment Anythingのようなファンデーションモデルに関しては、カモフラージュや医療画像など、アウト・オブ・ディストリビューション(out-of-distriion)データの処理には依然として課題がある。
微調整とテストの間に不整合なプロンプトが問題をさらに複雑にし、パフォーマンスが低下した。
人間の認知が新しい環境をどのように処理するかからインスピレーションを得たSlotSAMは、エンコーダの機能を自己教師付きで再構築し、オブジェクト中心の表現を生成する手法である。
これらの表現はファンデーションモデルに統合され、オブジェクトレベルの知覚能力を高めながら、分布に関連する変数の影響を減らす。
SlotSAMの美しさは、その単純さと様々なタスクへの適応性にあるため、基礎モデルの一般化能力を大幅に向上させる汎用的なソリューションである。
ブートストラップ方式でパラメータの微調整を限定することで,新しい環境における一般化の道を開くことができる。
コードはgithub.com/lytang63/SlotSAMで入手できる。
関連論文リスト
- SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
我々は、ゼロショットスパースミクチャー(SMILE)と呼ばれるモデル融合に対する革新的なアプローチを提案する。
SMILEは、余分なデータやさらなるトレーニングなしに、ソースモデルをMoEモデルにアップスケーリングできる。
画像分類やテキスト生成タスクなど,さまざまなシナリオに対して,フル微調整とLoRA微調整を用いて広範な実験を行う。
論文 参考訳(メタデータ) (2024-08-19T17:32:15Z) - InfRS: Incremental Few-Shot Object Detection in Remote Sensing Images [11.916941756499435]
本稿では,リモートセンシング画像におけるインクリメンタルな数ショット物体検出の複雑な課題について検討する。
本稿では,新しい授業の漸進的な学習を促進するために,InfRSと呼ばれる先駆的な微調整技術を導入する。
我々はワッサーシュタイン距離に基づく原型校正戦略を開発し、破滅的な忘れ問題を軽減する。
論文 参考訳(メタデータ) (2024-05-18T13:39:50Z) - ReCoRe: Regularized Contrastive Representation Learning of World Model [21.29132219042405]
対照的な教師なし学習と介入不変正規化器を用いて不変特徴を学習する世界モデルを提案する。
提案手法は,現状のモデルベースおよびモデルフリーのRL法より優れ,iGibsonベンチマークで評価された分布外ナビゲーションタスクを大幅に改善する。
論文 参考訳(メタデータ) (2023-12-14T15:53:07Z) - Universal Domain Adaptation from Foundation Models: A Baseline Study [58.51162198585434]
基礎モデルを用いた最先端UniDA手法の実証的研究を行った。
CLIPモデルからターゲット知識を抽出するためのパラメータフリーな手法であるtextitCLIP 蒸留を導入する。
単純な手法ではあるが、ほとんどのベンチマークタスクでは従来の手法よりも優れている。
論文 参考訳(メタデータ) (2023-05-18T16:28:29Z) - Global Relation Modeling and Refinement for Bottom-Up Human Pose
Estimation [4.24515544235173]
ボトムアップヒトポーズ推定のための畳み込みニューラルネットワークを提案する。
我々のモデルは、地域によって異なる粒度に焦点を合わせることができる。
COCO と CrowdPose のデータセットで得られた結果は,多人数ポーズ推定の効率的なフレームワークであることを実証している。
論文 参考訳(メタデータ) (2023-03-27T02:54:08Z) - Concept-modulated model-based offline reinforcement learning for rapid
generalization [5.512991103610139]
本研究では,環境概念や非教師付き手法で学習したダイナミックスに制約されたシナリオを自己生成する手法を提案する。
特に、エージェントの環境の内部モデルは、エージェントの動作に敏感な入力空間の低次元概念表現に条件付けされる。
モデルベースおよびモデルフリーアプローチと比較して,特定の障害事例の異なるインスタンスに対するワンショット一般化の劇的な改善と,同様のバリエーションに対するゼロショット一般化を示す。
論文 参考訳(メタデータ) (2022-09-07T15:06:38Z) - Exploring Complementary Strengths of Invariant and Equivariant
Representations for Few-Shot Learning [96.75889543560497]
多くの現実世界では、多数のラベル付きサンプルの収集は不可能です。
少ないショット学習はこの問題に対処するための主要なアプローチであり、目的は限られた数のサンプルの存在下で新しいカテゴリに迅速に適応することです。
幾何学的変換の一般集合に対する等分散と不変性を同時に強制する新しい訓練機構を提案する。
論文 参考訳(メタデータ) (2021-03-01T21:14:33Z) - Contextual Classification Using Self-Supervised Auxiliary Models for
Deep Neural Networks [6.585049648605185]
自己監督型自動学習(SSAL)モデルの概念を紹介します。
SSALの目的は、元の教師付き分類タスクから派生した1つ以上の追加目標によって実現される。
SSALモデルは、より解釈しやすい構造化された予測を提供しながら、常に最先端を上回ります。
論文 参考訳(メタデータ) (2021-01-07T18:41:16Z) - Progressive Self-Guided Loss for Salient Object Detection [102.35488902433896]
画像中の深層学習に基づくサラエント物体検出を容易にするプログレッシブ自己誘導損失関数を提案する。
我々のフレームワークは適応的に集約されたマルチスケール機能を利用して、健全な物体の探索と検出を効果的に行う。
論文 参考訳(メタデータ) (2021-01-07T07:33:38Z) - Prior Guided Feature Enrichment Network for Few-Shot Segmentation [64.91560451900125]
最先端のセマンティックセグメンテーション手法は、良い結果を得るために十分なラベル付きデータを必要とする。
少数のラベル付きサポートサンプルを持つ新しいクラスに迅速に適応するモデルを学習することで,この問題に対処するためのショットセグメンテーションが提案されている。
これらのフレームワークは、高レベルのセマンティック情報の不適切な使用により、目に見えないクラスにおける一般化能力の低下という課題に直面している。
論文 参考訳(メタデータ) (2020-08-04T10:41:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。