論文の概要: BEVal: A Cross-dataset Evaluation Study of BEV Segmentation Models for Autononomous Driving
- arxiv url: http://arxiv.org/abs/2408.16322v1
- Date: Thu, 29 Aug 2024 07:49:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-30 14:32:51.699363
- Title: BEVal: A Cross-dataset Evaluation Study of BEV Segmentation Models for Autononomous Driving
- Title(参考訳): BEVal:自動走行のためのBEVセグメンテーションモデルのクロスデータセット評価
- Authors: Manuel Alejandro Diaz-Zapata, Wenqian Liu, Robin Baruffa, Christian Laugier,
- Abstract要約: 我々は最先端のBEVセグメンテーションモデルの包括的クロスデータセット評価を行う。
本稿では,カメラやLiDARなどの各種センサがモデルの一般化能力に与える影響について検討する。
- 参考スコア(独自算出の注目度): 3.4113606473878386
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current research in semantic bird's-eye view segmentation for autonomous driving focuses solely on optimizing neural network models using a single dataset, typically nuScenes. This practice leads to the development of highly specialized models that may fail when faced with different environments or sensor setups, a problem known as domain shift. In this paper, we conduct a comprehensive cross-dataset evaluation of state-of-the-art BEV segmentation models to assess their performance across different training and testing datasets and setups, as well as different semantic categories. We investigate the influence of different sensors, such as cameras and LiDAR, on the models' ability to generalize to diverse conditions and scenarios. Additionally, we conduct multi-dataset training experiments that improve models' BEV segmentation performance compared to single-dataset training. Our work addresses the gap in evaluating BEV segmentation models under cross-dataset validation. And our findings underscore the importance of enhancing model generalizability and adaptability to ensure more robust and reliable BEV segmentation approaches for autonomous driving applications.
- Abstract(参考訳): 自律運転のためのセマンティック・バードズ・アイ・ビュー・セグメンテーションの現在の研究は、単一のデータセット(典型的にはnuScenes)を使用してニューラルネットワークモデルを最適化することに集中している。
このプラクティスは、異なる環境やセンサーのセットアップに直面したときに失敗する可能性のある、高度に専門化されたモデルの開発につながります。
本稿では,最新のBEVセグメンテーションモデルを包括的にクロスデータセットで評価し,異なるトレーニングとテストデータセット,セットアップ,および異なるセマンティックカテゴリ間での性能を評価する。
本稿では,カメラやLiDARなどの異なるセンサが,モデルが様々な状況やシナリオに一般化する能力に与える影響について検討する。
さらに,モデルにおけるBEVセグメンテーション性能を,シングルデータセットトレーニングと比較して向上させるマルチデータセットトレーニング実験を実施している。
我々の研究は、データセット間の検証の下でのBEVセグメンテーションモデルの評価におけるギャップに対処する。
また,より堅牢で信頼性の高いBEVセグメンテーションアプローチを自律運転アプリケーションに適用するために,モデル一般化可能性と適応性を高めることの重要性を強調した。
関連論文リスト
- Towards Ground-truth-free Evaluation of Any Segmentation in Medical Images [22.36128130052757]
本研究では,Segment Anything Model (SAM) が生成するセグメンテーションの質と,医療画像におけるその変種を評価するために,ゼロトラストフリー評価モデルを構築した。
この評価モデルは、入力画像と対応するセグメンテーション予測との一貫性と一貫性を解析することにより、セグメンテーション品質スコアを推定する。
論文 参考訳(メタデータ) (2024-09-23T10:12:08Z) - No "Zero-Shot" Without Exponential Data: Pretraining Concept Frequency Determines Multimodal Model Performance [68.18779562801762]
マルチモーダルモデルは、下流の"ゼロショット"のパフォーマンスを線形改善するために、指数関数的に多くのデータを必要とする。
本研究は,大規模な訓練パラダイムの下での「ゼロショット」一般化能力の鍵となる訓練データに対する指数関数的要求を明らかにする。
論文 参考訳(メタデータ) (2024-04-04T17:58:02Z) - Predictive Analytics of Varieties of Potatoes [2.336821989135698]
本研究では, 育種試験におけるサツマイモクローンの選択プロセスの向上を目的とした, 機械学習アルゴリズムの適用について検討する。
本研究は, 高収率, 耐病性, 耐気候性ポテト品種を効率的に同定することの課題に対処する。
論文 参考訳(メタデータ) (2024-04-04T00:49:05Z) - Self-Evolved Diverse Data Sampling for Efficient Instruction Tuning [47.02160072880698]
モデル自体が等しくあるいはそれ以上に効果的であるサブセットを積極的にサンプリングできる自己進化メカニズムを導入します。
データサンプリング技術の鍵は、選択したサブセットの多様性の向上にあります。
3つのデータセットとベンチマークにわたる大規模な実験は、DiverseEvolの有効性を示している。
論文 参考訳(メタデータ) (2023-11-14T14:10:40Z) - A-Eval: A Benchmark for Cross-Dataset Evaluation of Abdominal
Multi-Organ Segmentation [38.644744669074775]
A-Evalは,Abdominal ('A') の多臓器セグメンテーションのクロスデータセット評価('Eval')のためのベンチマークである。
FLARE22、AMOS、WORD、TotalSegmentatorという4つの大規模パブリックデータセットのトレーニングセットを採用しています。
A-Evalベンチマークを用いて各種モデルの一般化可能性を評価し,多様なデータ利用シナリオに着目した。
論文 参考訳(メタデータ) (2023-09-07T17:59:50Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
ソースフリードメイン適応(source-free domain adapt, SFDA)は、ソースデータセットにアクセスすることなく、十分にトレーニングされたソースモデルを未学習のターゲットドメインに適応することを目的としている。
既存のSFDAメソッドは、ターゲットのトレーニングセット上で適用されたモデルを評価し、目に見えないが同一の分散テストセットからデータを無視する。
より一般化可能なSFDA法を開発するための整合正則化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-03T07:45:53Z) - Multi-Domain Joint Training for Person Re-Identification [51.73921349603597]
ReID(Deep Learning-based person Re-IDentification)は、優れたパフォーマンスを達成するために、大量のトレーニングデータを必要とすることが多い。
多様な環境からより多くのトレーニングデータを集めることで、ReIDのパフォーマンスが向上する傾向にある。
本稿では,パラメータを様々な要因に適応させることができる,Domain-Camera-Sample Dynamic Network (DCSD) というアプローチを提案する。
論文 参考訳(メタデータ) (2022-01-06T09:20:59Z) - MSeg: A Composite Dataset for Multi-domain Semantic Segmentation [100.17755160696939]
セマンティックセグメンテーションデータセットを異なるドメインから統合する合成データセットであるMSegを提案する。
一般化と画素レベルのアノテーションのアライメントを調整し,2万枚以上のオブジェクトマスクを8万枚以上の画像で再現する。
MSegでトレーニングされたモデルは、WildDash-v1のリーダーボードで、トレーニング中にWildDashのデータに触れることなく、堅牢なセマンティックセグメンテーションのためにランク付けされている。
論文 参考訳(メタデータ) (2021-12-27T16:16:35Z) - Comparing Test Sets with Item Response Theory [53.755064720563]
我々は,18の事前学習トランスフォーマーモデルから予測した29のデータセットを個別のテスト例で評価した。
Quoref、HellaSwag、MC-TACOは最先端のモデルを区別するのに最適である。
また、QAMRやSQuAD2.0のようなQAデータセットに使用されるスパン選択タスク形式は、強いモデルと弱いモデルとの差別化に有効である。
論文 参考訳(メタデータ) (2021-06-01T22:33:53Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
少量のラベル付きテストデータのみを用いて機械学習モデルを効率的にテストする新しいフレームワークを提案する。
ベイズニューラルネットワーク(bnn)を用いたモデルアンダーテストの関心指標の推定が目的である。
論文 参考訳(メタデータ) (2021-04-11T12:14:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。