論文の概要: Distributed quantum machine learning via classical communication
- arxiv url: http://arxiv.org/abs/2408.16327v1
- Date: Thu, 29 Aug 2024 08:05:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-30 14:32:51.689765
- Title: Distributed quantum machine learning via classical communication
- Title(参考訳): 古典的通信による分散量子機械学習
- Authors: Kiwmann Hwang, Hyang-Tag Lim, Yong-Su Kim, Daniel K. Park, Yosep Kim,
- Abstract要約: 本稿では,古典的通信を通じて量子プロセッサユニットを統合する実験的な分散量子機械学習手法を提案する。
その結果,古典的コミュニケーションを取り入れることで,コミュニケーションのないスキームに比べて分類精度が向上することが示唆された。
- 参考スコア(独自算出の注目度): 0.7378853859331619
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum machine learning is emerging as a promising application of quantum computing due to its distinct way of encoding and processing data. It is believed that large-scale quantum machine learning demonstrates substantial advantages over classical counterparts, but a reliable scale-up is hindered by the fragile nature of quantum systems. Here we present an experimentally accessible distributed quantum machine learning scheme that integrates quantum processor units via classical communication. As a demonstration, we perform data classification tasks on 8-dimensional synthetic datasets by emulating two 4-qubit processors and employing quantum convolutional neural networks. Our results indicate that incorporating classical communication notably improves classification accuracy compared to schemes without communication. Furthermore, at the tested circuit depths, we observe that the accuracy with classical communication is no less than that achieved with quantum communication. Our work provides a practical path to demonstrating large-scale quantum machine learning on intermediate-scale quantum processors by leveraging classical communication that can be implemented through currently available mid-circuit measurements.
- Abstract(参考訳): 量子機械学習は、データエンコーディングと処理の方法が異なるため、量子コンピューティングの有望な応用として現れつつある。
大規模量子機械学習は古典的な機械学習に比べて大きな優位性を示すと考えられているが、信頼性の高いスケールアップは量子システムの脆弱な性質によって妨げられている。
ここでは、古典的な通信を通じて量子プロセッサユニットを統合する、実験的にアクセス可能な分散量子機械学習方式を提案する。
実演として,2つの4ビットプロセッサをエミュレートし,量子畳み込みニューラルネットワークを用いて8次元合成データセットのデータ分類タスクを行う。
その結果,古典的コミュニケーションを取り入れることで,コミュニケーションのないスキームに比べて分類精度が向上することが示唆された。
さらに, 実験回路深度では, 古典的通信の精度は量子通信の精度に劣らない。
我々の研究は、現在利用可能な中間回路計測によって実装可能な古典的な通信を活用して、中間スケールの量子プロセッサ上で大規模量子機械学習を実証するための実践的な道筋を提供する。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - The curse of random quantum data [62.24825255497622]
量子データのランドスケープにおける量子機械学習の性能を定量化する。
量子機械学習におけるトレーニング効率と一般化能力は、量子ビットの増加に伴い指数関数的に抑制される。
この結果は量子カーネル法と量子ニューラルネットワークの広帯域限界の両方に適用できる。
論文 参考訳(メタデータ) (2024-08-19T12:18:07Z) - Synergy between noisy quantum computers and scalable classical deep learning [0.4999814847776097]
雑音量子コンピュータの計算能力と古典的スケーラブル畳み込みニューラルネットワーク(CNN)の組み合わせの可能性について検討する。
目標は、量子イジングモデルのトロッター分解力学を表すパラメータ化量子回路の正確な期待値を正確に予測することである。
量子情報のおかげで、古典的な記述子のみに基づく教師あり学習が失敗しても、私たちのCNNは成功します。
論文 参考訳(メタデータ) (2024-04-11T14:47:18Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - Quantum Federated Learning With Quantum Networks [7.842152902652214]
本稿では,古典データとハブ-スポークトポロジを用いた通信のための量子古典的転送学習手法を提案する。
量子通信は盗聴攻撃から安全であり、量子から古典への変換の計測は行わないが、クローニング定理がないため、ハブ・スポークトポロジーは量子メモリなしでの量子通信には理想的ではない。
また、量子フェデレート学習における量子ウェイトの最初の成功例も示しています。
論文 参考訳(メタデータ) (2023-10-23T16:45:29Z) - Classical Verification of Quantum Learning [42.362388367152256]
量子学習の古典的検証のための枠組みを開発する。
そこで我々は,新しい量子データアクセスモデルを提案し,これを"mixture-of-superpositions"量子例と呼ぶ。
この結果から,学習課題における量子データの潜在能力は無限ではないものの,古典的エージェントが活用できることが示唆された。
論文 参考訳(メタデータ) (2023-06-08T00:31:27Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
古典的な機械学習アプローチが量子コンピュータの設備改善にどのように役立つかを示す。
量子アルゴリズムと量子コンピュータは、古典的な機械学習タスクを解くのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-04T23:37:45Z) - Quantum-Classical Hybrid Information Processing via a Single Quantum
System [1.1602089225841632]
量子ベースの通信における現在の技術は、ハイブリッド処理のための古典的なデータと量子データの新たな統合をもたらす。
本稿では,古典的入力と量子的入力の両方を必要とする計算タスクにおいて,量子力学を利用する量子貯水池プロセッサを提案する。
論文 参考訳(メタデータ) (2022-09-01T14:33:40Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
53量子ビット量子プロセッサにおける量子スクランブルのダイナミクスを実験的に検討する。
演算子の拡散は効率的な古典的モデルによって捉えられるが、演算子の絡み合いは指数関数的にスケールされた計算資源を必要とする。
論文 参考訳(メタデータ) (2021-01-21T22:18:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。