Robustness of the projected squeezed state protocol
- URL: http://arxiv.org/abs/2310.11948v2
- Date: Thu, 9 May 2024 07:56:35 GMT
- Title: Robustness of the projected squeezed state protocol
- Authors: B. J. Alexander, J. J. Bollinger, M. S. Tame,
- Abstract summary: Projected squeezed (PS) states are multipartite entangled states generated by unitary spin squeezing.
We simulate the generation of PS states in non-ideal experimental conditions with relevant decoherence channels.
Our findings highlight PS states as useful metrological resources, demonstrating a robustness against environmental effects with increasing qubit number N.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Projected squeezed (PS) states are multipartite entangled states generated by unitary spin squeezing, followed by a collective quantum measurement and post-selection. They can lead to an appreciable decrease in the state preparation time of the maximally entangled N-qubit Greenberger-Horne-Zeilinger (GHZ) state when compared to deterministic preparation by unitary transformations in physical systems where spin squeezing can be realized, such as ion, neutral atom, and superconducting qubits. Here we simulate the generation of PS states in non-ideal experimental conditions with relevant decoherence channels. By employing the Kraus operator method, and quantum trajectory method to reduce the computational complexity, we assess the quantum Fisher information and overlap fidelity with an ideal GHZ state. Our findings highlight PS states as useful metrological resources, demonstrating a robustness against environmental effects with increasing qubit number N.
Related papers
- Engineering of Hyperentangled Complex Quantum Networks [2.72027416356867]
We propose a new and feasible scheme to engineer the atomic hyperentangled cluster and ring graph states invoking cavity QED technique.
These states are engineered using both external quantized momenta states and energy levels of neutral atoms under off-resonant and resonant Atomic Bragg Diffraction technique.
arXiv Detail & Related papers (2024-08-29T09:58:03Z) - Unlocking Heisenberg Sensitivity with Sequential Weak Measurement Preparation [0.0]
We generate entangled spin states devoid of the necessity for non-linear spin interactions.
The metrological sensitivity of the resulting state surpasses the standard quantum limit.
Our findings introduce a novel method for generating large-scale, non-classical, entangled states.
arXiv Detail & Related papers (2024-03-09T16:27:15Z) - Neural-network quantum states for ultra-cold Fermi gases [49.725105678823915]
This work introduces a novel Pfaffian-Jastrow neural-network quantum state that includes backflow transformation based on message-passing architecture.
We observe the emergence of strong pairing correlations through the opposite-spin pair distribution functions.
Our findings suggest that neural-network quantum states provide a promising strategy for studying ultra-cold Fermi gases.
arXiv Detail & Related papers (2023-05-15T17:46:09Z) - Dissipative preparation and stabilization of many-body quantum states in
a superconducting qutrit array [55.41644538483948]
We present and analyze a protocol for driven-dissipatively preparing and stabilizing a manifold of quantum manybody entangled states.
We perform theoretical modeling of this platform via pulse-level simulations based on physical features of real devices.
Our work shows the capacity of driven-dissipative superconducting cQED systems to host robust and self-corrected quantum manybody states.
arXiv Detail & Related papers (2023-03-21T18:02:47Z) - Macroscopic maximally entangled state preparation between two atomic
ensembles [0.0]
We prepare a macroscopic maximally entangled state (MMES) between two atomic ensembles using adaptive quantum nondemolition (QND) measurements.
The quantum state of the system is evolved using a sequence of QND measurements followed by adaptive unitaries.
arXiv Detail & Related papers (2023-02-15T08:47:31Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Stroboscopic quantum nondemolition measurements for enhanced
entanglement generation between atomic ensembles [3.0734813171130204]
We develop a measurement operator formalism to handle quantum nondemolition (QND) measurement induced entanglement generation between two atomic gases.
We show several mathematical identities which greatly simplify the state evolution in the projection sequence.
Our formalism does not use the Holstein-Primakoff approximation as is conventionally done, and treats the spins of the atomic gases in an exact way.
arXiv Detail & Related papers (2021-10-18T06:30:20Z) - Probing infinite many-body quantum systems with finite-size quantum
simulators [0.0]
We propose a protocol that makes optimal use of a given finite-size simulator by directly preparing, on its bulk region, a mixed state.
For systems of free fermions in one and two spatial dimensions, we illustrate and explain the underlying physics.
For the example of a non-integrable extended Su-Schrieffer-Heeger model, we demonstrate that our protocol enables a more accurate study of QPTs.
arXiv Detail & Related papers (2021-08-27T16:27:46Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
We propose novel quantum metrology applications with two soliton qubit states.
Phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes.
arXiv Detail & Related papers (2020-11-26T09:05:06Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.