論文の概要: CooTest: An Automated Testing Approach for V2X Communication Systems
- arxiv url: http://arxiv.org/abs/2408.16470v1
- Date: Thu, 29 Aug 2024 12:01:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-30 14:02:47.145327
- Title: CooTest: An Automated Testing Approach for V2X Communication Systems
- Title(参考訳): CooTest: V2X通信システムの自動テストアプローチ
- Authors: An Guo, Xinyu Gao, Zhenyu Chen, Yuan Xiao, Jiakai Liu, Xiuting Ge, Weisong Sun, Chunrong Fang,
- Abstract要約: 我々は,V2X指向の協調認識モジュールの最初の自動テストツールであるCooTestを設計,実装した。
CooTestは、様々なV2X指向の運転条件下での誤動作を効果的に検出できる。
- 参考スコア(独自算出の注目度): 15.570594621752834
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Perceiving the complex driving environment precisely is crucial to the safe operation of autonomous vehicles. With the tremendous advancement of deep learning and communication technology, Vehicle-to-Everything (V2X) collaboration has the potential to address limitations in sensing distant objects and occlusion for a single-agent perception system. However, despite spectacular progress, several communication challenges can undermine the effectiveness of multi-vehicle cooperative perception. The low interpretability of Deep Neural Networks (DNNs) and the high complexity of communication mechanisms make conventional testing techniques inapplicable for the cooperative perception of autonomous driving systems (ADS). Besides, the existing testing techniques, depending on manual data collection and labeling, become time-consuming and prohibitively expensive. In this paper, we design and implement CooTest, the first automated testing tool of the V2X-oriented cooperative perception module. CooTest devises the V2X-specific metamorphic relation and equips communication and weather transformation operators that can reflect the impact of the various cooperative driving factors to produce transformed scenes. Furthermore, we adopt a V2X-oriented guidance strategy for the transformed scene generation process and improve testing efficiency. We experiment CooTest with multiple cooperative perception models with different fusion schemes to evaluate its performance on different tasks. The experiment results show that CooTest can effectively detect erroneous behaviors under various V2X-oriented driving conditions. Also, the results confirm that CooTest can improve detection average precision and decrease misleading cooperation errors by retraining with the generated scenes.
- Abstract(参考訳): 複雑な運転環境を正確に把握することは、自動運転車の安全な運転に不可欠である。
深層学習とコミュニケーション技術の飛躍的な進歩により、V2X(Vager-to-Everything)コラボレーションは、遠く離れた物体を遠ざける際の限界に対処し、単一エージェントの知覚システムに対する閉塞に対処する可能性がある。
しかし、目覚ましい進歩にもかかわらず、複数のコミュニケーション課題は、複数車両の協調認識の有効性を損なう可能性がある。
ディープニューラルネットワーク(DNN)の低解釈性と通信機構の複雑さにより、従来のテスト技術は自律運転システム(ADS)の協調認識には適用できない。
さらに、手動のデータ収集とラベル付けに依存する既存のテスト技術は、時間がかかり、違法に高価になる。
本稿では,V2X指向協調認識モジュールの最初の自動テストツールであるCooTestの設計と実装を行う。
CooTestは、V2X固有の変成関係を考案し、様々な協調駆動要因の影響を反映して変換シーンを生成する通信と気象変化演算子を装備する。
さらに,変換されたシーン生成プロセスに対して,V2X指向のガイダンス戦略を採用し,テスト効率を向上する。
我々は,異なる融合方式で複数の協調認識モデルを用いてCooTestを実験し,その性能を異なるタスクで評価する。
実験の結果,CooTestは様々なV2X駆動条件下での誤動作を効果的に検出できることがわかった。
また,CooTestは検出平均精度を向上し,生成シーンと再トレーニングすることで,ミスリード協調エラーを低減できることを確認した。
関連論文リスト
- Towards Interactive and Learnable Cooperative Driving Automation: a Large Language Model-Driven Decision-Making Framework [79.088116316919]
コネクテッド・オートモービルズ(CAV)は世界中の道路試験を開始したが、複雑なシナリオにおける安全性と効率性はまだ十分ではない。
本稿では,対話型かつ学習可能なLLM駆動協調運転フレームワークCoDrivingLLMを提案する。
論文 参考訳(メタデータ) (2024-09-19T14:36:00Z) - CooPre: Cooperative Pretraining for V2X Cooperative Perception [47.00472259100765]
本稿では,V2X協調認識のための自己教師付き学習手法を提案する。
膨大な量のラベルのない3D V2Xデータを用いて知覚性能を向上させる。
論文 参考訳(メタデータ) (2024-08-20T23:39:26Z) - CMP: Cooperative Motion Prediction with Multi-Agent Communication [21.60646440715162]
本稿では,協調動作予測の実現可能性と有効性について検討する。
提案手法であるCMPは,LiDAR信号をモデル入力とし,追跡と予測能力を向上させる。
特に、CMPは平均予測誤差を16.4%削減し、検出精度は低下している。
論文 参考訳(メタデータ) (2024-03-26T17:53:27Z) - V2X Cooperative Perception for Autonomous Driving: Recent Advances and Challenges [32.11627955649814]
車両間協調認識(V2X)により、車両は認識データを共有でき、状況認識を高め、個々の車両の知覚能力の限界を克服することができる。
V2X CPは、認識範囲の拡大、精度の向上、複雑な環境下での自動運転車の意思決定と制御能力の向上に不可欠である。
本稿では、V2X CPの最近の進歩を包括的に調査し、様々なコラボレーション戦略にまたがるCPプロセスの数学的モデルを紹介する。
論文 参考訳(メタデータ) (2023-10-05T13:19:48Z) - Towards Vehicle-to-everything Autonomous Driving: A Survey on
Collaborative Perception [40.90789787242417]
自動車から全車への自動運転(V2X)は、新しい世代のインテリジェント交通システムを開発する上で有望な方向を開く。
V2Xを実現するための重要な要素として協調的知覚(CP)は、個々の知覚の固有の限界を克服することができる。
我々は、V2XシナリオのCPメソッドの包括的なレビューを行い、コミュニティに深い深い深い理解をもたらします。
論文 参考訳(メタデータ) (2023-08-31T13:28:32Z) - NLOS Dies Twice: Challenges and Solutions of V2X for Cooperative
Perception [7.819255257787961]
本稿では,高速なセンサフュージョンマッチング手順とモビリティハイトハイブリッドリレー決定手順のための抽象的認識行列マッチング手法を提案する。
提案手法の有効性を実証するため,自律走行,センサ融合,V2X通信全般を考慮した新しいシミュレーションフレームワークを設計した。
論文 参考訳(メタデータ) (2023-07-13T08:33:02Z) - Interruption-Aware Cooperative Perception for V2X Communication-Aided
Autonomous Driving [49.42873226593071]
本稿では,V2X通信支援自律運転のためのV2X通信入出力対応協調知覚(V2X-INCOP)を提案する。
我々は、過去の協力情報を用いて、割り込みによる行方不明情報を復元し、割り込み問題の影響を軽減する。
3つの公的な協調認識データセットの実験から,コミュニケーション中断が協調知覚に与える影響を緩和するために提案手法が有効であることが示された。
論文 参考訳(メタデータ) (2023-04-24T04:59:13Z) - COOPERNAUT: End-to-End Driving with Cooperative Perception for Networked
Vehicles [54.61668577827041]
本稿では,車間認識を用いたエンドツーエンド学習モデルであるCOOPERNAUTを紹介する。
われわれのAutoCastSim実験は、我々の協調知覚駆動モデルが平均成功率を40%向上させることを示唆している。
論文 参考訳(メタデータ) (2022-05-04T17:55:12Z) - V2X-ViT: Vehicle-to-Everything Cooperative Perception with Vision
Transformer [58.71845618090022]
我々は、道路上のエージェント間で情報を融合するために、V2X-ViTという全体論的アテンションモデルを構築した。
V2X-ViTは異質なマルチエージェント自己アテンションとマルチスケールウィンドウ自己アテンションの交互層から構成される。
我々のアプローチを検証するために、我々は大規模なV2X知覚データセットを作成します。
論文 参考訳(メタデータ) (2022-03-20T20:18:25Z) - Learning to Communicate and Correct Pose Errors [75.03747122616605]
本稿では、V2VNetで提案された設定について検討し、近くにある自動運転車が共同で物体検出と動き予測を協調的に行う方法を提案する。
本稿では,コミュニケーションを学習し,潜在的な誤りを推定し,それらの誤りについてコンセンサスを得るための新しいニューラルネットワーク推論フレームワークを提案する。
論文 参考訳(メタデータ) (2020-11-10T18:19:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。