Learning from Negative Samples in Generative Biomedical Entity Linking
- URL: http://arxiv.org/abs/2408.16493v1
- Date: Thu, 29 Aug 2024 12:44:01 GMT
- Title: Learning from Negative Samples in Generative Biomedical Entity Linking
- Authors: Chanhwi Kim, Hyunjae Kim, Sihyeon Park, Jiwoo Lee, Mujeen Sung, Jaewoo Kang,
- Abstract summary: We introduce ANGEL, the first framework that trains generative BioEL models using negative samples.
Our models fine-tuned with ANGEL outperform the previous best baseline models by up to an average top-1 accuracy of 1.4% on five benchmarks.
- Score: 20.660717375784596
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative models have become widely used in biomedical entity linking (BioEL) due to their excellent performance and efficient memory usage. However, these models are usually trained only with positive samples--entities that match the input mention's identifier--and do not explicitly learn from hard negative samples, which are entities that look similar but have different meanings. To address this limitation, we introduce ANGEL (Learning from Negative Samples in Generative Biomedical Entity Linking), the first framework that trains generative BioEL models using negative samples. Specifically, a generative model is initially trained to generate positive samples from the knowledge base for given input entities. Subsequently, both correct and incorrect outputs are gathered from the model's top-k predictions. The model is then updated to prioritize the correct predictions through direct preference optimization. Our models fine-tuned with ANGEL outperform the previous best baseline models by up to an average top-1 accuracy of 1.4% on five benchmarks. When incorporating our framework into pre-training, the performance improvement further increases to 1.7%, demonstrating its effectiveness in both the pre-training and fine-tuning stages. Our code is available at https://github.com/dmis-lab/ANGEL.
Related papers
- Enhancing Sample Selection by Cutting Mislabeled Easy Examples [62.13094877228772]
We show that mislabeled examples correctly predicted by the model early in the training process are particularly harmful to model performance.
We propose Early Cutting, which employs the model's later training state to re-select the confident subset identified early in training.
arXiv Detail & Related papers (2025-02-12T09:12:45Z) - Clear Preferences Leave Traces: Reference Model-Guided Sampling for Preference Learning [59.11519451499754]
Direct Preference Optimization (DPO) has emerged as a de-facto approach for aligning language models with human preferences.
Recent work has shown DPO's effectiveness relies on training data quality.
We discover that reference model probability space naturally detects high-quality training samples.
arXiv Detail & Related papers (2025-01-25T07:21:50Z) - Universality in Transfer Learning for Linear Models [18.427215139020625]
We study the problem of transfer learning in linear models for both regression and binary classification.
We provide an exact and rigorous analysis and relate generalization errors (in regression) and classification errors (in binary classification) for the pretrained and fine-tuned models.
arXiv Detail & Related papers (2024-10-03T03:09:09Z) - Self-Consuming Generative Models with Curated Data Provably Optimize Human Preferences [20.629333587044012]
We study the impact of data curation on iterated retraining of generative models.
We prove that, if the data is curated according to a reward model, the expected reward of the iterative retraining procedure is maximized.
arXiv Detail & Related papers (2024-06-12T21:28:28Z) - Post-Hoc Reversal: Are We Selecting Models Prematurely? [13.910702424593797]
We show a phenomenon that we call post-hoc reversal, where performance trends are reversed after applying post-hoc transforms.
Preliminary analyses suggest that these transforms induce reversal by suppressing the influence of mislabeled examples.
We propose post-hoc selection, a simple technique whereby post-hoc metrics inform model development decisions.
arXiv Detail & Related papers (2024-04-11T14:58:19Z) - Neural Priming for Sample-Efficient Adaptation [92.14357804106787]
We propose Neural Priming, a technique for adapting large pretrained models to distribution shifts and downstream tasks.
Neural Priming can be performed at test time, even for pretraining as large as LAION-2B.
arXiv Detail & Related papers (2023-06-16T21:53:16Z) - METRO: Efficient Denoising Pretraining of Large Scale Autoencoding
Language Models with Model Generated Signals [151.3601429216877]
We present an efficient method of pretraining large-scale autoencoding language models using training signals generated by an auxiliary model.
We propose a recipe, namely "Model generated dEnoising TRaining Objective" (METRO)
The resultant models, METRO-LM, consisting of up to 5.4 billion parameters, achieve new state-of-the-art on the GLUE, SuperGLUE, and SQuAD benchmarks.
arXiv Detail & Related papers (2022-04-13T21:39:15Z) - Uncertainty Estimation for Language Reward Models [5.33024001730262]
Language models can learn a range of capabilities from unsupervised training on text corpora.
It is often easier for humans to choose between options than to provide labeled data, and prior work has achieved state-of-the-art performance by training a reward model from such preference comparisons.
We seek to address these problems via uncertainty estimation, which can improve sample efficiency and robustness using active learning and risk-averse reinforcement learning.
arXiv Detail & Related papers (2022-03-14T20:13:21Z) - Ensembling Off-the-shelf Models for GAN Training [55.34705213104182]
We find that pretrained computer vision models can significantly improve performance when used in an ensemble of discriminators.
We propose an effective selection mechanism, by probing the linear separability between real and fake samples in pretrained model embeddings.
Our method can improve GAN training in both limited data and large-scale settings.
arXiv Detail & Related papers (2021-12-16T18:59:50Z) - Positive-Congruent Training: Towards Regression-Free Model Updates [87.25247195148187]
In image classification, sample-wise inconsistencies appear as "negative flips"
A new model incorrectly predicts the output for a test sample that was correctly classified by the old (reference) model.
We propose a simple approach for PC training, Focal Distillation, which enforces congruence with the reference model.
arXiv Detail & Related papers (2020-11-18T09:00:44Z) - A Comparison of LSTM and BERT for Small Corpus [0.0]
Recent advancements in the NLP field showed that transfer learning helps with achieving state-of-the-art results for new tasks by tuning pre-trained models instead of starting from scratch.
In this paper we focus on a real-life scenario that scientists in academia and industry face frequently: given a small dataset, can we use a large pre-trained model like BERT and get better results than simple models?
Our experimental results show that bidirectional LSTM models can achieve significantly higher results than a BERT model for a small dataset and these simple models get trained in much less time than tuning the pre-trained counterparts.
arXiv Detail & Related papers (2020-09-11T14:01:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.