Heisenberg-Limited Spin-Mechanical Gravimetry
- URL: http://arxiv.org/abs/2408.16587v2
- Date: Sun, 24 Nov 2024 06:35:24 GMT
- Title: Heisenberg-Limited Spin-Mechanical Gravimetry
- Authors: Victor Montenegro,
- Abstract summary: We show that the gravimetry precision of a conditional displacement spin-mechanical system increases quadratically with the number of spins.
We predict an absolute gravimetry uncertainty of $10-11textm/s2$ to $10-6textm/s2$, without relying on free-fall methodologies.
- Score: 0.0
- License:
- Abstract: Precision measurements of gravitational acceleration, or gravimetry, enable the testing of physical theories and find numerous applications in geodesy and space exploration. By harnessing quantum effects, high-precision sensors can achieve sensitivity and accuracy far beyond their classical counterparts when using the same number of sensing resources. Therefore, developing gravimeters with quantum-enhanced sensitivity is essential for advancing theoretical and applied physics. While novel quantum gravimeters have already been proposed for this purpose, the ultimate sensing precision, known as the Heisenberg limit, remains largely elusive. Here, we demonstrate that the gravimetry precision of a conditional displacement spin-mechanical system increases quadratically with the number of spins: a Heisenberg-limited spin-mechanical gravimeter. In general, the gravitational parameter is dynamically encoded into the entire entangled spin-mechanical probe. However, at some specific times, the mechanical degree of freedom disentangles from the spin subsystem, transferring all the information about the gravitational acceleration to the spin subsystem. Hence, we prove that a feasible spin magnetization measurement can reveal the ultimate gravimetry precision at such disentangling times. We predict an absolute gravimetry uncertainty of $10^{-11}\text{m/s}^2$ to $10^{-6}\text{m/s}^2$, without relying on free-fall methodologies, ground-state cooling of the mechanical object, and robust against spin-mechanical coupling anisotropies.
Related papers
- Stochastic Metric Fluctuations and Detection of Gravitons [0.0]
We will propose a way to detect gravitons by replicating the Brownian motion experiment.
The Bose-Einstein occupation number $N_g$ for gravitons can be large enough to be the particle components of the gravitational random metric fluctuations in a physical system.
arXiv Detail & Related papers (2024-08-29T20:11:29Z) - Quantum Sensing from Gravity as Universal Dephasing Channel for Qubits [41.96816488439435]
WeExploit the generic phenomena of the gravitational redshift and Aharonov-Bohm phase.
We show that entangled quantum states dephase with a universal rate.
We propose qubit-based platforms as quantum sensors for precision gravitometers and mechanical strain gauges.
arXiv Detail & Related papers (2024-06-05T13:36:06Z) - Measuring gravity by holding atoms [0.0]
We optimize sensitivity of a lattice interferometer and use a system of signal inversions and switches to suppress and quantify systematic effects.
This enables us to measure the attraction of a miniature source mass, ruling out the existence of screened dark energy theories.
Further upgrades may enable measuring forces at sub-millimeter ranges, the gravitational Aharonov-Bohm effect and the gravitational constant, compact gravimetry.
arXiv Detail & Related papers (2023-10-02T17:07:54Z) - Quantum Gravitational Sensor for Space Debris [0.0]
We will establish a three dimensional model to describe the gravity gradient signal from an external moving object.
We will then theoretically investigate the sensitivities using the matter-wave interferometer based on the Stern-Gerlach set-up.
We will consider objects near Earth-based experiments and space debris in proximity of satellites.
arXiv Detail & Related papers (2022-11-28T19:00:03Z) - Manipulation of gravitational quantum states of a bouncing neutron with
the GRANIT spectrometer [44.62475518267084]
The GRANIT apparatus is the first physics experiment connected to a superthermal helium UCN source.
We report on the methods developed for this instrument showing how specific GQS can be favored using a step between mirrors and an absorbing slit.
arXiv Detail & Related papers (2022-05-23T08:37:28Z) - Quantum Sensors for High Precision Measurements of Spin-dependent
Interactions [47.187609203210705]
Experimental methods and technologies developed for quantum information science have rapidly advanced in recent years.
Spin-based quantum sensors can be used to search for myriad phenomena.
Spin-based quantum sensors offer a methodology for tests of fundamental physics that is complementary to particle colliders and large scale particle detectors.
arXiv Detail & Related papers (2022-03-17T17:36:48Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Optimal estimation of time-dependent gravitational fields with quantum
optomechanical systems [0.0]
We study the fundamental sensitivity that can be achieved with an ideal optomechanical system in the nonlinear regime.
We specifically apply our results to the measurement of gravitational fields from small oscillating masses.
arXiv Detail & Related papers (2020-08-14T18:00:01Z) - Qubit spin ice [58.720142291102135]
We report a realization of spin ice in a lattice of superconducting qubits.
The ground state is classically described by the ice rule, and we achieve control over a fragile degeneracy point.
The demonstrated qubit control lays the groundwork for potential future study of topologically protected artificial quantum spin liquids.
arXiv Detail & Related papers (2020-07-21T01:50:40Z) - Gravity Probe Spin: Prospects for measuring general-relativistic
precession of intrinsic spin using a ferromagnetic gyroscope [51.51258642763384]
An experimental test at the intersection of quantum physics and general relativity is proposed.
The behavior of intrinsic spin in spacetime is an experimentally open question.
A measurement is possible by using mm-scale ferromagnetic gyroscopes in orbit around the Earth.
arXiv Detail & Related papers (2020-06-16T17:18:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.