Designing a compact cavity-enhanced source of entangled photons
- URL: http://arxiv.org/abs/2408.16666v1
- Date: Thu, 29 Aug 2024 16:11:09 GMT
- Title: Designing a compact cavity-enhanced source of entangled photons
- Authors: Žiga Pušavec, Lara Ulčakar, Rainer Kaltenbaek,
- Abstract summary: Quantum repeaters will require sources of entanglement allowing efficient coupling to quantum memories.
Here, we address this challenge with a compact, narrowband source design.
The entangled pairs are generated via SPDC in two perpendicularly oriented nonlinear crystals in a Fabry-P'erot cavity.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum repeaters will require sources of entanglement allowing efficient coupling to quantum memories. Here, we address this challenge with a compact, narrowband source design. The entangled pairs are generated via SPDC in two perpendicularly oriented nonlinear crystals in a Fabry-P\'e{}rot cavity. We show that the case of highly non-degenerate wavelengths and type-II phase matching is the most promising candidate for a practical implementation. Using the parameters of an experiment we are currently working on, this design should allow generating entangled photons with a bandwidth of a few MHz.
Related papers
- Generation and characterization of polarization-entangled states using
quantum dot single-photon sources [0.0]
Single-photon sources based on semiconductor quantum dots find several applications in quantum information processing.
We implement this approach via a simple and compact design that generates entangled photon pairs in the polarization degree of freedom.
Our source shows long-term stability and high quality of the generated entangled states, thus constituting a reliable building block for optical quantum technologies.
arXiv Detail & Related papers (2023-08-04T16:07:12Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - High-rate sub-GHz linewidth bichromatic entanglement source for quantum
networking [59.191830955730346]
In this work, we study an entanglement source based on four-wave mixing in a diamond configuration in a warm rubidium vapor.
We are able to achieve in-fiber entangled pair generation rates greater than $107, /s$, orders of magnitude higher than previously reported atomic sources.
arXiv Detail & Related papers (2023-04-11T21:19:30Z) - High-fidelity parametric beamsplitting with a parity-protected converter [2.5818006849347857]
Fast, high-fidelity operations between microwave resonators are an important tool for bosonic quantum computation and simulation.
An attractive approach is to couple these resonators via a nonlinear converter and actuate parametric processes with RF drives.
We show that in addition to a careful management of drive frequencies and the spectrum of environmental noise, leveraging the inbuilt symmetries of the converter Hamiltonian can suppress unwanted nonlinear interactions.
We characterize this beamsplitter in the cavities' joint single-photon subspace, and show that we can detect and post-select photon loss events to achieve a beamsplitter gate
arXiv Detail & Related papers (2023-03-02T04:30:01Z) - Unfolding the Hong-Ou-Mandel interference between heralded photons from
narrowband twin beams [0.0]
Hong-Ou-Mandel (HOM) interference is crucial in performing quantum optical communication and computation tasks.
Lately, twin beam emitters such as those relying on the process of parametric down-conversion (PDC) have become confident sources of heralded single photons.
Here, we derive the temporal characteristics of the HOM interference between heralded states from two independent narrowband PDC sources.
arXiv Detail & Related papers (2023-02-21T13:09:54Z) - Amplification of cascaded downconversion by reusing photons with a
switchable cavity [62.997667081978825]
We propose a scheme to amplify triplet production rates by using a fast switch and a delay loop.
Our proof-of-concept device increases the rate of detected photon triplets as predicted.
arXiv Detail & Related papers (2022-09-23T15:53:44Z) - Ultrabright and narrowband intra-fiber biphoton source at ultralow pump
power [51.961447341691]
Nonclassical photon sources of high brightness are key components of quantum communication technologies.
We here demonstrate the generation of narrowband, nonclassical photon pairs by employing spontaneous four-wave mixing in an optically-dense ensemble of cold atoms within a hollow-core fiber.
arXiv Detail & Related papers (2022-08-10T09:04:15Z) - Complete conversion between one and two photons in nonlinear waveguides
with tailored dispersion [62.997667081978825]
We show theoretically how to control coherent conversion between a narrow-band pump photon and broadband photon pairs in nonlinear optical waveguides.
We reveal that complete deterministic conversion as well as pump-photon revival can be achieved at a finite propagation distance.
arXiv Detail & Related papers (2021-10-06T23:49:44Z) - Efficient Generation of Subnatural-Linewidth Biphotons by Controlled
Quantum Interference [0.9877468274612591]
Biphotons of narrow bandwidth and long temporal length play a crucial role in long-distance quantum communication.
By manipulating the two-component biphoton wavefunction, we demonstrate biphotons with subnatural linewidth in the sub-MHz regime.
Our work has potential applications in realizing quantum repeaters and large cluster states for LDQC and LOQC.
arXiv Detail & Related papers (2020-09-09T02:39:50Z) - Entangled Photon-Pair Sources based on three-wave mixing in bulk
crystals [61.84816391246232]
Entangled photon-pairs are a critical resource in quantum communication protocols ranging from quantum key distribution to teleportation.
The increased prominence of quantum networks has led to growing interest in deployable high performance entangled photon-pair sources.
This manuscript provides a review of the state-of-the-art for bulk-optics-based SPDC sources with continuous wave pump.
arXiv Detail & Related papers (2020-07-30T10:35:06Z) - Optimizing spontaneous parametric down-conversion sources for boson
sampling [0.0]
We show that an optimal trade-off between indistinguishability and losses can always be found for spontaneous downconversion.
A 50-photon scattershot boson-sampling experiment using SPDC sources is possible from a computational complexity point of view.
arXiv Detail & Related papers (2020-01-10T18:24:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.