The relevance of degenerate states in chiral polaritonics
- URL: http://arxiv.org/abs/2408.16695v2
- Date: Tue, 12 Nov 2024 08:20:49 GMT
- Title: The relevance of degenerate states in chiral polaritonics
- Authors: Carlos M. Bustamante, Dominik Sidler, Michael Ruggenthaler, Angel Rubio,
- Abstract summary: We study whether a parity-violating/chiral light-matter interaction is required to capture all relevant aspects of chiral polaritonics.
This question is non-trivial to answer, since achiral theories (Hamiltonians) still possess chiral solutions.
- Score: 0.0
- License:
- Abstract: In this work we explore theoretically whether a parity-violating/chiral light-matter interaction is required to capture all relevant aspects of chiral polaritonics or if a parity-conserving/achiral theory is sufficient (e.g. long-wavelength/dipole approximation). This question is non-trivial to answer, since achiral theories (Hamiltonians) still possess chiral solutions. To elucidate this fundamental theoretical question, a simple GaAs quantum ring model is coupled to an effective chiral mode of a single-handedness optical cavity in dipole approximation. The bare matter GaAs quantum ring possesses a non-degenerate ground state and a doubly degenerate first excited state. The chiral or achiral nature (superpositions) of the degenerate excited states remains undetermined for an isolated matter system. However, inside our parity-conserving description of a chiral cavity, we find that the dressed eigenstates automatically (ab-initio) attain chiral character and become energetically discriminated based on the handedness of the cavity. In contrast, the non-degenerate bare matter state (ground state) does not show an energetic discrimination inside a chiral cavity within dipole approximation. Nevertheless, our results suggest that the handedness of the cavity can still be imprinted onto these states (e.g. angular momentum and chiral current densities). Overall, above findings highlight the relevance of degenerate states in chiral polaritonics. In particular, because recent theoretical results for linearly polarized cavities indicate the formation of a frustrated and highly-degenerate electronic ground-state under collective strong coupling conditions, which, likewise, is expected to form in chiral polaritonics and thus could be prone to chiral symmetry breaking effects.
Related papers
- Analytic Model Reveals Local Molecular Polarizability Changes Induced by Collective Strong Coupling in Optical Cavities [0.8642326601683299]
We present non-perturbative analytic results for a model system consisting of an ensemble of $N$ harmonic molecules under vibrational strong coupling.
We discover that the electronic molecular polarizabilities are modified even in the case of vanishingly small single-molecule couplings.
arXiv Detail & Related papers (2024-01-29T18:13:43Z) - Dissipative preparation of a Floquet topological insulator in an optical lattice via bath engineering [44.99833362998488]
Floquet engineering is an important tool for realizing charge-neutral atoms in optical lattices.
We show that a driven-dissipative system approximates a topological insulator.
arXiv Detail & Related papers (2023-07-07T17:47:50Z) - Theory of exciton-polariton condensation in gap-confined eigenmodes [0.0]
Exciton-polaritons are bosonic-like elementary excitations in semiconductors.
polariton condensation can also occur in gap-confined bright modes.
arXiv Detail & Related papers (2023-06-04T06:59:45Z) - Chiral polaritons based on achiral Fabry-Perot cavities using apparent
circular dichroism [0.0]
Polariton states with high levels of chiral dissymmetry offer exciting prospects for quantum information, sensing, and lasing applications.
Here, we theoretically demonstrate how chiral polaritons can be realized by combining (high quality factor) achiral Fabry-Perot cavities with samples exhibiting a phenomenon known as "apparent circular dichroism" (ACD)
By introducing a quantum electrodynamical theory of ACD, we identify the design rules based on which the dissymmetry of chiral polaritons can be optimized.
arXiv Detail & Related papers (2022-08-30T18:00:02Z) - In-Gap Band Formation in a Periodically Driven Charge Density Wave
Insulator [68.8204255655161]
Periodically driven quantum many-body systems host unconventional behavior not realized at equilibrium.
We investigate such a setup for strongly interacting spinless fermions on a chain, which at zero temperature and strong interactions form a charge density wave insulator.
arXiv Detail & Related papers (2022-05-19T13:28:47Z) - A perspective on ab initio modeling of polaritonic chemistry: The role
of non-equilibrium effects and quantum collectivity [0.0]
This perspective provides a brief introduction into the theoretical complexity of polaritonic chemistry.
ab initio methods are used to tackle this complexity.
Various extensions towards a refined description of cavity-modified chemistry are introduced.
arXiv Detail & Related papers (2021-08-27T12:48:57Z) - Prolonged orbital relaxation by locally modified phonon density of
states for SiV$^-$ center in nanodiamonds [45.82374977939355]
Coherent quantum systems are a key resource for emerging quantum technology.
A novel method is presented to prolong the orbital relaxation with a locally modified phonon density of states.
arXiv Detail & Related papers (2021-07-30T14:14:26Z) - Spectrum of localized states in fermionic chains with defect and
adiabatic charge pumping [68.8204255655161]
We study the localized states of a generic quadratic fermionic chain with finite-range couplings.
We analyze the robustness of the connection between bands against perturbations of the Hamiltonian.
arXiv Detail & Related papers (2021-07-20T18:44:06Z) - A multiconfigurational study of the negatively charged nitrogen-vacancy
center in diamond [55.58269472099399]
Deep defects in wide band gap semiconductors have emerged as leading qubit candidates for realizing quantum sensing and information applications.
Here we show that unlike single-particle treatments, the multiconfigurational quantum chemistry methods, traditionally reserved for atoms/molecules, accurately describe the many-body characteristics of the electronic states of these defect centers.
arXiv Detail & Related papers (2020-08-24T01:49:54Z) - Maximum refractive index of an atomic medium [58.720142291102135]
All optical materials with a positive refractive index have a value of index that is of order unity.
Despite the giant response of an isolated atom, we find that the maximum index does not indefinitely grow with increasing density.
We propose an explanation based upon strong-disorder renormalization group theory.
arXiv Detail & Related papers (2020-06-02T14:57:36Z) - Incomplete spontaneous decay in a waveguide caused by polarization
selection [0.0]
Spontaneous decay of an excited atom in a waveguide is essentially modified by the spatial structure of vacuum reservoir.
We found out that spontaneous decay can be incomplete, so the time dependence of the excited state populationally approaches to a nonzero value.
Discovered effect is explained by the emergence of the dark state, which is non-decaying due to polarization selection rules.
arXiv Detail & Related papers (2020-04-27T15:59:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.