論文の概要: Incremental Context-free Grammar Inference in Black Box Settings
- arxiv url: http://arxiv.org/abs/2408.16706v1
- Date: Thu, 29 Aug 2024 17:00:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-30 12:51:37.102935
- Title: Incremental Context-free Grammar Inference in Black Box Settings
- Title(参考訳): ブラックボックス設定におけるインクリメンタル文脈自由文法推論
- Authors: Feifei Li, Xiao Chen, Xi Xiao, Xiaoyu Sun, Chuan Chen, Shaohua Wang, Jitao Han,
- Abstract要約: ブラックボックスの文脈自由文法推論は多くの実践的な設定において重要な課題である。
そこで本研究では,サンプル文字列をより小さな単位に分割し,文法を漸進的に推論する手法を提案する。
我々の手法であるKedavraは、より優れた文法品質(精度とリコールの強化)、より高速な実行、経験的比較による可読性の向上を実証した。
- 参考スコア(独自算出の注目度): 17.601446198181048
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Black-box context-free grammar inference presents a significant challenge in many practical settings due to limited access to example programs. The state-of-the-art methods, Arvada and Treevada, employ heuristic approaches to generalize grammar rules, initiating from flat parse trees and exploring diverse generalization sequences. We have observed that these approaches suffer from low quality and readability, primarily because they process entire example strings, adding to the complexity and substantially slowing down computations. To overcome these limitations, we propose a novel method that segments example strings into smaller units and incrementally infers the grammar. Our approach, named Kedavra, has demonstrated superior grammar quality (enhanced precision and recall), faster runtime, and improved readability through empirical comparison.
- Abstract(参考訳): ブラックボックスの文脈自由文法推論は、サンプルプログラムへのアクセスが限られているため、多くの実践的な設定において重要な課題である。
最先端の手法であるArvadaとTreevadaは、文法規則を一般化するためにヒューリスティックなアプローチを採用し、平らなパースツリーから開始し、多様な一般化シーケンスを探索する。
これらのアプローチは、主にサンプル文字列全体を処理し、複雑さを増し、計算を著しく遅くするため、低品質で可読性に悩まされている。
これらの制限を克服するために,サンプル文字列をより小さな単位に分割し,文法を漸進的に推論する手法を提案する。
我々の手法であるKedavraは、より優れた文法品質(精度とリコールの強化)、より高速な実行、経験的比較による可読性の向上を実証した。
関連論文リスト
- Context-aware Prompt Tuning: Advancing In-Context Learning with Adversarial Methods [69.36397993451742]
In this work introduced Context-aware Prompt Tuning (CPT) - ICL, PT, and adversarial attack。
入力および出力フォーマットのユニークな構造を考慮して、特定のコンテキストトークンを変更する。
敵の攻撃にインスパイアされた我々は、損失を最大化するのではなく、最小化に焦点をあてて、コンテキストに存在するラベルに基づいて入力を調整する。
論文 参考訳(メタデータ) (2024-10-22T17:45:47Z) - Detecting and explaining (in)equivalence of context-free grammars [0.6282171844772422]
文脈自由文法の同値性を決定し,証明し,説明するためのスケーラブルなフレームワークを提案する。
本稿では,本フレームワークの実装と,教育支援システム内で収集された大規模データセット上での評価を行う。
論文 参考訳(メタデータ) (2024-07-25T17:36:18Z) - Understanding and Mitigating Classification Errors Through Interpretable
Token Patterns [58.91023283103762]
容易に解釈可能な用語でエラーを特徴付けることは、分類器が体系的なエラーを起こす傾向にあるかどうかを洞察する。
正しい予測と誤予測を区別するトークンのパターンを発見することを提案する。
提案手法であるPremiseが実際によく動作することを示す。
論文 参考訳(メタデータ) (2023-11-18T00:24:26Z) - Fast Deterministic Black-box Context-free Grammar Inference [7.637155559284357]
State-of-the-artアプローチは、平らなパースツリーから始まる文法規則を一般化する。
アルバダの一般化の多くは、共通の言語概念のネスト規則に違反している。
結果、TreeVadaは経験的な比較で高速で高品質な文法を得た。
論文 参考訳(メタデータ) (2023-08-11T14:45:26Z) - Free Lunch for Efficient Textual Commonsense Integration in Language
Models [20.02647320786556]
類似したコモンセンス記述を持つサンプルを1つのバッチにグループ化し、複数のサンプル間でエンコードされた記述を再利用する。
大規模な実験では、提案したバッチ分割手法が性能を保ちながら計算コストを効果的に削減することを示した。
効率の改善は、大規模なデータセットや、メモリ容量の大きいデバイスでより顕著であり、大規模なアプリケーションに実用性があることを証明している。
論文 参考訳(メタデータ) (2023-05-24T19:14:57Z) - Alleviating Over-smoothing for Unsupervised Sentence Representation [96.19497378628594]
本稿では,この問題を緩和するために,SSCL(Self-Contrastive Learning)というシンプルな手法を提案する。
提案手法は非常に単純で,様々な最先端モデルに拡張して,性能向上を図ることができる。
論文 参考訳(メタデータ) (2023-05-09T11:00:02Z) - Structured Prompting: Scaling In-Context Learning to 1,000 Examples [78.41281805608081]
長さ制限を破り、文脈内学習を数千の例に拡張する構造化プロンプトを導入する。
具体的には、デモ例は、適切に設計された位置埋め込みで別々にエンコードされ、その後、再スケールされた注意機構を使用してテスト例に共同で出席する。
論文 参考訳(メタデータ) (2022-12-13T16:31:21Z) - On Parsing as Tagging [66.31276017088477]
そこで我々は,現在最先端の選挙区タグであるテトラタグを減らして,シフト-リデュース解析を行う方法を示す。
我々は、線形化器、学習者、復号器の異なる選択でタグ付けパイプラインの分類を実証的に評価する。
論文 参考訳(メタデータ) (2022-11-14T13:37:07Z) - A Neural Model for Regular Grammar Induction [8.873449722727026]
我々は文法を計算のモデルとして扱い、正および負の例から正規文法を誘導する新しいニューラルアプローチを提案する。
我々のモデルは完全に説明可能であり、その中間結果は部分解析として直接解釈可能であり、十分なデータが得られると任意の正規文法を学習することができる。
論文 参考訳(メタデータ) (2022-09-23T14:53:23Z) - Learning grammar with a divide-and-concur neural network [4.111899441919164]
本研究では,文脈自由文法推論に対する分割・コンカレント反復予測手法を実装した。
本手法は比較的少数の離散パラメータを必要とするため,推測文法を直接解釈可能である。
論文 参考訳(メタデータ) (2022-01-18T22:42:43Z) - Obtaining Better Static Word Embeddings Using Contextual Embedding
Models [53.86080627007695]
提案手法はCBOWをベースとした簡易な蒸留法である。
副作用として、我々の手法は文脈的および静的な埋め込みの公正な比較を可能にする。
論文 参考訳(メタデータ) (2021-06-08T12:59:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。