論文の概要: Detecting and explaining (in)equivalence of context-free grammars
- arxiv url: http://arxiv.org/abs/2407.18220v1
- Date: Thu, 25 Jul 2024 17:36:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-26 13:09:36.671058
- Title: Detecting and explaining (in)equivalence of context-free grammars
- Title(参考訳): 文脈自由文法の同値性の検出と説明
- Authors: Marko Schmellenkamp, Thomas Zeume, Sven Argo, Sandra Kiefer, Cedric Siems, Fynn Stebel,
- Abstract要約: 文脈自由文法の同値性を決定し,証明し,説明するためのスケーラブルなフレームワークを提案する。
本稿では,本フレームワークの実装と,教育支援システム内で収集された大規模データセット上での評価を行う。
- 参考スコア(独自算出の注目度): 0.6282171844772422
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a scalable framework for deciding, proving, and explaining (in)equivalence of context-free grammars. We present an implementation of the framework and evaluate it on large data sets collected within educational support systems. Even though the equivalence problem for context-free languages is undecidable in general, the framework is able to handle a large portion of these datasets. It introduces and combines techniques from several areas, such as an abstract grammar transformation language to identify equivalent grammars as well as sufficiently similar inequivalent grammars, theory-based comparison algorithms for a large class of context-free languages, and a graph-theory-inspired grammar canonization that allows to efficiently identify isomorphic grammars.
- Abstract(参考訳): 文脈自由文法の同値性を決定し,証明し,説明するためのスケーラブルなフレームワークを提案する。
本稿では,本フレームワークの実装と,教育支援システム内で収集された大規模データセット上での評価を行う。
文脈自由言語の同値問題は一般には決定できないが、このフレームワークはこれらのデータセットの大部分を処理できる。
抽象文法変換言語(英語版)による等価文法の同定や、十分に類似した同値な文法の同定、文脈自由言語の大規模なクラスに対する理論に基づく比較アルゴリズム、同型文法の効率的な識別を可能にするグラフ理論に着想を得た文法の正準化など、いくつかの分野からの技術を導入し、組み合わせている。
関連論文リスト
- Language Models for Text Classification: Is In-Context Learning Enough? [54.869097980761595]
最近の基礎言語モデルでは、ゼロショットや少数ショットの設定で多くのNLPタスクで最先端のパフォーマンスが示されている。
より標準的なアプローチよりもこれらのモデルの利点は、自然言語(prompts)で書かれた命令を理解する能力である。
これにより、アノテーション付きインスタンスが限られているドメインのテキスト分類問題に対処するのに適している。
論文 参考訳(メタデータ) (2024-03-26T12:47:39Z) - A logical word embedding for learning grammar [4.111899441919164]
テキストのコーパスから語彙カテゴリと構文規則の教師なし推論を可能にするために,論理文法エンデビング(LGE)を導入する。
LGEは、その推論を要約した理解可能な出力を生成し、新しい文を生成するための完全に透明なプロセスを持ち、数百の文から学習することができる。
論文 参考訳(メタデータ) (2023-04-28T01:53:54Z) - CLSE: Corpus of Linguistically Significant Entities [58.29901964387952]
専門家が注釈を付けた言語学的に重要なエンティティ(CLSE)のコーパスをリリースする。
CLSEは74種類のセマンティックタイプをカバーし、航空券売機からビデオゲームまで様々なアプリケーションをサポートする。
言語的に代表されるNLG評価ベンチマークを,フランス語,マラティー語,ロシア語の3言語で作成する。
論文 参考訳(メタデータ) (2022-11-04T12:56:12Z) - Multilingual Extraction and Categorization of Lexical Collocations with
Graph-aware Transformers [86.64972552583941]
我々は,グラフ対応トランスフォーマアーキテクチャにより拡張されたBERTに基づくシーケンスタグ付けモデルを提案し,コンテキストにおけるコロケーション認識の課題について評価した。
以上の結果から, モデルアーキテクチャにおける構文的依存関係を明示的に符号化することは有用であり, 英語, スペイン語, フランス語におけるコロケーションのタイプ化の差異について考察する。
論文 参考訳(メタデータ) (2022-05-23T16:47:37Z) - Learning grammar with a divide-and-concur neural network [4.111899441919164]
本研究では,文脈自由文法推論に対する分割・コンカレント反復予測手法を実装した。
本手法は比較的少数の離散パラメータを必要とするため,推測文法を直接解釈可能である。
論文 参考訳(メタデータ) (2022-01-18T22:42:43Z) - On The Ingredients of an Effective Zero-shot Semantic Parser [95.01623036661468]
我々は、標準発話とプログラムの訓練例を文法から言い換えて、ゼロショット学習を分析する。
改良された文法,より強力なパラフレーズ,効率的な学習手法を用いて,これらのギャップを埋めることを提案する。
我々のモデルはラベル付きデータゼロの2つの意味解析ベンチマーク(Scholar, Geo)で高い性能を達成する。
論文 参考訳(メタデータ) (2021-10-15T21:41:16Z) - Dependency Induction Through the Lens of Visual Perception [81.91502968815746]
本稿では,単語の具体性を利用した教師なし文法帰納モデルと,構成的視覚に基づく構成的文法を共同学習する手法を提案する。
実験により,提案した拡張は,文法的サイズが小さい場合でも,現在最先端の視覚的接地モデルよりも優れた性能を示すことが示された。
論文 参考訳(メタデータ) (2021-09-20T18:40:37Z) - VLGrammar: Grounded Grammar Induction of Vision and Language [86.88273769411428]
共同学習枠組みにおける視覚と言語の基底文法誘導について検討する。
本稿では,複合確率文脈自由文法(pcfgs)を用いて言語文法と画像文法を同時に誘導する手法であるvlgrammarを提案する。
論文 参考訳(メタデータ) (2021-03-24T04:05:08Z) - Comparison by Conversion: Reverse-Engineering UCCA from Syntax and
Lexical Semantics [29.971739294416714]
堅牢な自然言語理解システムの構築には、さまざまな言語的意味表現が相互に補完するかどうか、明確に評価する必要がある。
i)ルールベースのコンバータ,(ii)他の情報のみを特徴として1つのフレームワークに解析する教師付きデレクシカル化の2つの相補的手法を用いて,異なるフレームワークからの意味表現間のマッピングを評価する。
論文 参考訳(メタデータ) (2020-11-02T09:03:46Z) - Montague Grammar Induction [4.321645312120979]
このフレームワークは、帰納文法が従うべき仮定について、アナリストにきめ細かい制御を提供する。
本稿では,s(emantic)-selectionとc(ategory)-selectionの関係に着目し,レキシコンスケールの受容可能性判定データセットを入力として利用する。
論文 参考訳(メタデータ) (2020-10-15T23:25:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。