論文の概要: A Gradient Analysis Framework for Rewarding Good and Penalizing Bad Examples in Language Models
- arxiv url: http://arxiv.org/abs/2408.16751v1
- Date: Thu, 29 Aug 2024 17:46:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-30 12:41:39.486809
- Title: A Gradient Analysis Framework for Rewarding Good and Penalizing Bad Examples in Language Models
- Title(参考訳): 言語モデルにおける悪例の回避と罰則化のためのグラディエント分析フレームワーク
- Authors: Yi-Lin Tuan, William Yang Wang,
- Abstract要約: 本稿では,損失関数の勾配解析の特異な角度について述べる。
ExMATEはMLEの優れたサロゲートであり,DPOとMLEの代わりにExMATEを組み合わせることで,統計的(5-7%)と生成的(+18%)の性能が向上することがわかった。
- 参考スコア(独自算出の注目度): 63.949883238901414
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Beyond maximum likelihood estimation (MLE), the standard objective of a language model (LM) that optimizes good examples probabilities, many studies have explored ways that also penalize bad examples for enhancing the quality of output distribution, including unlikelihood training, exponential maximizing average treatment effect (ExMATE), and direct preference optimization (DPO). To systematically compare these methods and further provide a unified recipe for LM optimization, in this paper, we present a unique angle of gradient analysis of loss functions that simultaneously reward good examples and penalize bad ones in LMs. Through both mathematical results and experiments on CausalDialogue and Anthropic HH-RLHF datasets, we identify distinct functional characteristics among these methods. We find that ExMATE serves as a superior surrogate for MLE, and that combining DPO with ExMATE instead of MLE further enhances both the statistical (5-7%) and generative (+18% win rate) performance.
- Abstract(参考訳): よい例の確率を最適化する言語モデル(LM)の標準目的である最大極大推定(MLE)以外にも、不規則学習、指数最大化平均処理効果(ExMATE)、直接選好最適化(DPO)など、出力分布の品質向上のための悪い例を罰する手法も検討されている。
本稿では、これらの手法を体系的に比較し、さらにLM最適化のための統一的なレシピを提供するために、損失関数の勾配解析のユニークな角度を示す。
CausalDialogue と Anthropic HH-RLHF データセットの数学的結果と実験により,これらの手法の異なる機能特性を同定した。
ExMATEはMLEの優れたサロゲートであり,DPOとMLEの代わりにExMATEを組み合わせることで,統計的(5-7%)と生成的(+18%)の性能が向上することがわかった。
関連論文リスト
- Scalable Influence and Fact Tracing for Large Language Model Pretraining [14.598556308631018]
トレーニングデータ属性(TDA)メソッドは、特定のトレーニング例にモデル出力を振り返ることを目的としている。
本稿では,既存の勾配法を改良し,大規模に効果的に機能させる。
論文 参考訳(メタデータ) (2024-10-22T20:39:21Z) - Self-supervised Preference Optimization: Enhance Your Language Model with Preference Degree Awareness [27.43137305486112]
本稿では,自己監督的選好度損失とアライメント損失を組み合わせた自己監督的選好度損失を構成する,新しい自己監督的選好最適化(SPO)フレームワークを提案する。
その結果,SPOを既存の好み最適化手法とシームレスに統合し,最先端性能を実現することができた。
論文 参考訳(メタデータ) (2024-09-26T12:37:26Z) - ASFT: Aligned Supervised Fine-Tuning through Absolute Likelihood [14.512464277772194]
Aligned Supervised Fine-Tuning (ASFT)は、大規模言語モデルとペアワイズデータセットの整合性を改善する効果的なアプローチである。
ASFTは、DPO損失関数が人間の不適切なデータを生成する確率を減少させる問題を緩和する。
大規模な実験により、ASFTは効果的なアライメントアプローチであり、既存の手法より一貫して優れていることが示された。
論文 参考訳(メタデータ) (2024-09-14T11:39:13Z) - Self-Exploring Language Models: Active Preference Elicitation for Online Alignment [88.56809269990625]
本研究では, 分布域外領域を積極的に探索するために, 潜在的に高次応答に対して楽観的に偏りを呈する2段階的客観性を提案する。
実験の結果,Zephyr-7B-SFTとLlama-3-8B-Instructモデルで微調整した場合,SELM(Self-Exploring Language Models)は命令追従ベンチマークの性能を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2024-05-29T17:59:07Z) - Monte Carlo Tree Search Boosts Reasoning via Iterative Preference Learning [55.96599486604344]
本稿では,Large Language Models (LLMs) の推論能力向上を目的とした,反復的な選好学習プロセスによるアプローチを提案する。
我々は、MCTS(Monte Carlo Tree Search)を用いて好みデータを反復的に収集し、そのルックアヘッド機能を利用して、インスタンスレベルの報酬をよりきめ細かいステップレベルの信号に分解する。
提案アルゴリズムはDPO(Direct Preference Optimization)を用いて,新たに生成されたステップレベルの優先度データを用いてLCMポリシーを更新する。
論文 参考訳(メタデータ) (2024-05-01T11:10:24Z) - Preference Fine-Tuning of LLMs Should Leverage Suboptimal, On-Policy Data [102.16105233826917]
好みラベルからの学習は、微調整された大きな言語モデルにおいて重要な役割を果たす。
好みの微調整には、教師付き学習、オンライン強化学習(RL)、コントラスト学習など、いくつかの異なるアプローチがある。
論文 参考訳(メタデータ) (2024-04-22T17:20:18Z) - Fine-Tuning Language Models with Advantage-Induced Policy Alignment [80.96507425217472]
大規模言語モデルと人間の嗜好を整合させる新しいアルゴリズムを提案する。
言語タスクにおいてPPOを常に上回り、大きなマージンを持つことを示す。
また,損失関数の設計を支援する理論的正当性も提供する。
論文 参考訳(メタデータ) (2023-06-04T01:59:40Z) - Estimate-Then-Optimize versus Integrated-Estimation-Optimization versus
Sample Average Approximation: A Stochastic Dominance Perspective [15.832111591654293]
モデルクラスが十分に特定され、十分なデータが存在する場合に、逆の振る舞いが現れることを示す。
また, 標準サンプル平均近似 (SAA) が, 後悔の点において, モデルクラスが適切に特定された場合に, 最悪の結果をもたらすことを示す。
論文 参考訳(メタデータ) (2023-04-13T21:54:53Z) - Principled Reinforcement Learning with Human Feedback from Pairwise or
$K$-wise Comparisons [79.98542868281473]
RLHF(Reinforcement Learning with Human Feedback)の理論的枠組みを提供する。
学習した報酬モデルに基づいてポリシーをトレーニングする際、MLEは失敗し、悲観的なMLEは特定のカバレッジ仮定の下で性能を改善したポリシーを提供する。
論文 参考訳(メタデータ) (2023-01-26T18:07:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。